首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of Temperature and Relative Humidity on Polylactic Acid Plastic Degradation
Authors:Kai-Lai G Ho  Anthony L Pometto III  Paul N Hinz
Institution:(1) Department of Food Science and Human Nutrition and Center for Crops Utilization Research, Iowa State University, Ames, Iowa, 50011;(2) Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, 50011;(3) Department of Statistics, Iowa State University, Ames, Iowa, 50011
Abstract:Three high molecular weight (120,000 to 200,000 g mol–1) polylactic acid (PLA) plastic films from Chronopol (Ch-I) and Cargill Dow Polymers (GII and Ca-I) were analyzed for their degradation under various temperature and relative humidity (RH) conditions. Two sets of plastic films, each containing 11 samples, were randomly hung in a temperature/humidity-controlled chamber by means of plastic-coated paper clips. The tested conditions were 28, 40, and 55°C at 50 and 100% RH, respectively, and 55°C at 10% RH. The three tested PLA films started to lose their tensile properties when their weight-average molecular weight (M w) was in the range of 50,000 to 75,000 g mol–1. The average degradation rate of Ch-I, GII, and Ca-I was 28,931, 27,361, and 63,025 M w/week, respectively. Hence, GII had a faster degradation rate than Ch-I and Ca-I under all tested conditions. The degradation rate of PLA plastics was enhanced by the increase in temperature and relative humidity. This trend was observed in all three PLA plastics (Ca-I, GII, and Ch-I). Of the three tested films, Ch-I was the first to lose its mechanical properties, whereas Ca-I demonstrated the slowest loss, with mechanical properties under all tested conditions.
Keywords:Polylactic acid  temperature  relative humidity  degradation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号