首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Scrutinizing compost properties and their impact on methane oxidation efficiency
Authors:Huber-Humer Marion  Tintner Johannes  Böhm Katharina  Lechner Peter
Institution:BOKU - University of Natural Resources and Life Sciences Vienna, Institute of Waste Management, Muthgasse 107/3rd Floor, A-1190 Vienna, Austria
Abstract:Methane emissions from active or closed landfills can be reduced by means of microbial methane oxidation enhanced by properly designed landfill covers and engineered biocovers. Composts produced using different waste materials have already been proven to support methane oxidation, and may represent a low-cost alternative to other suitable substrates such as sandy or humic-rich soils, which are frequently not available in sufficient amounts or are too costly. In the present study a data set of 30 different compost materials (different age and input materials) and mixtures, as well as seven soils and mineral substrates were tested to assess methane oxidation rate under similar conditions in a laboratory column set-up. Multivariate data analysis (discriminant analysis) was applied to predict the influence of 21 different parameters (chemical, maturation and physical) on methane oxidation rate in a PLS-DA model. The results show that bulk density, total nutrient content (nitrogen and phosphorus), as well as the quantity and quality (with respect to maturity) of organic matter determined methane oxidation rate in this data set. The model explained 50% of the data variation, indicating how characterisation of oxidation rate by single, even diverse conventional parameters was limited. Thus for the first time, Fourier Transform Infrared (FTIR) spectroscopy was applied to a series of samples to better determine the characteristics of methane-oxidising materials. The initial data obtained in this study appear to be most promising. The prediction of specific methane oxidation rate of a potential biocover material from FTIR spectra and multivariate data analyses is a target to be focused on in the future.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号