首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Adsorption removal of pollutants by active cokes produced from sludge in the energy recycle process of wastes
Authors:Kojima Naozumi  Mitomo Aki  Itaya Yoshinori  Mori Shigekatsu  Yoshida Shuichi
Institution:Department of Chemical Engineering, Nagoya University, Japan.
Abstract:This study proposes a recycling system of sludge into active cokes and the fundamental examinations for the application were carried out. In the system, active cokes were produced by carbonizing pellets of sludge in a steam stream. Pyrolysis gas yielded by carbonization can be available to a fuel for a steam generation boiler. The exhaust heat from the boiler is used sequentially for drying of sludge. The active cokes are applied to the adsorbent for dioxin removal in exhaust gas from incinerators of wastes, or for purification of gas obtained in a gasification process of wastes, particularly removal of H2S. The used adsorbent is not recycled, but incinerated in the furnace without a desorption process to decompose adsorbed dioxin or to oxidize H2S for a sequential desulfurization process of SO2. Dry pellets of sludge were carbonized in a quartz tube reactor under various atmospheres. The micro pore structure and the adsorption performance of the cokes produced without activation process were examined. The micro pore structure was influenced by the temperature, the sort of flow gas (N2, CO2 and steam) and carbonization time, and the active cokes produced under the condition of the temperature 823 K for 60 min in the steam atmosphere had a largest specific surface area in the diameter less than 5 nm. The amount of benzene adsorption as an alternative substance of dioxin into the active cokes had a similar quality to a commercial active char produced from coal if it was evaluated by adsorption per a unit specific surface area. This fundamental knowledge must be reflected to an optimum design for development of a simple continuous process to produce the active cokes by a fluidized bed type of the carbonization furnace.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号