首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of organic amendment on degradation and formation of bound residues of methabenzthiazuron in soil under constant climatic conditions
Authors:H Printz  P Burauel  F Führ
Institution:1. Bayer AG , PF‐E/MR, Leverkusen, 51368, Germany;2. Forschungszentrum Jülich GmbH , Institute of Radioagronomy , Jülich, 52425, Germany
Abstract:Abstract

The degradation of phenyl‐U‐14C]methabenzthiazuron (MBT) and formation of bound residues in the surface soil of an orthic luvisol were studied under constant climatic conditions (20°C, 40 % of maximum water holding capacity). In two treatments (with and without preincubation in the soil) maize straw was amended at a rate of 1.5 g/100 g dry soil in addition to the application of MBT. The mineralization of uniformly labeled maize straw was studied simultaneously. In additional flasks, MBT was incubated at 0, 10 and 30°C with and without addition of maize straw.

The turnover of the amended maize straw led to an enhanced dissipation of MBT which was mainly due to the formation of bound residues. This corresponded to a higher microbial activity in the soil after straw amendment and the intensive mineralization of the radiolabeled maize straw. About 2–3 % of the applied radioactivity from the radiolabeled maize straw was measured in the soil microbial biomass 10 and 40 days after application whereas 14C from MBT was only incorporated into soil microbial biomass in the treatments with straw amendment.

Within the bound residue fractions relatively more radioactivity was measured in fulvic and humic acids after straw amendment. Increasing temperatures promoted the dissipation of MBT and the formation of bound residues in both treatments, but without amendment of maize straw these effects were far less pronounced. The laboratory scale degradation experiment led to similar results as were found in a corresponding lysimeter study. Differences that were observed could be explained by different temperature regimes of the experiments and time of aging in soil.
Keywords:methabenzthiazuron  14C  degradation  bound residues  microbial activity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号