首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Can secondary organic aerosol formed in an atmospheric simulation chamber continuously age?
Authors:Li Qi  Shunsuke Nakao  Quentin Malloy  Bethany Warren  David R Cocker
Institution:1. Department of Chemistry & Biochemistry, Old Dominion University, Norfolk, VA 23529, USA;2. Department of Earth, Ocean & Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA
Abstract:This work investigates the oxidative aging process of SOA derived from select aromatic (m-xylene) and biogenic (α-pinene) precursors within an environmental chamber. Simultaneous measurements of SOA hygroscopicity, volatility, particle density, and elemental chemical composition (C:O:H) reveal only slight particle aging for up to the first 16 h of formation. The chemical aging observed is consistent with SOA that is decreasing in volatility and increasing in O/C and hydrophilicity. Even after aging, the O/C (0.25 and 0.40 for α-pinene and m-xylene oxidation, respectively) was below the OOAI and OOAII ambient fractions measured by high-resolution aerosol mass spectra coupled with Positive Matrix Factorization (PMF). The rate of increase in O/C does not appear to be sufficient to achieve OOAI or OOAII levels of oxygenation within regular chamber experiment duration. No chemical aging was observed for SOA during dark α-pinene ozonolysis with a hydroxyl radical scavenger present. This finding is consistent with observations by other groups that SOA from this system is comprised of first generation products.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号