首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Lidar and satellite retrieval of dust aerosols over the Azores during SOFIA/ASTEX
Institution:1. State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, No. 94 Weijin Road, Tianjin 300071, China;2. Hangzhou Municipal Environmental Monitoring Centre, Hangzhou 310007, China;1. Institute of Geophysics, University of Hamburg, Bundesstrasse 55, D-20146 Hamburg, Germany;2. Now at Polarcus Limited, Almas Tower, Level 32, Jumeirah Lakes Towers, PO Box 283373, Dubai, United Arab Emirates;3. Institute of Geology, University of Hamburg, Bundesstrasse 55, D-20146 Hamburg, Germany
Abstract:The synergy between active (airborne lidar) and passive (Meteosat) sensors is achieved with the help of a numerical transport model (TM2z) to derive optical properties of Saharan dust during a long range transport over the Azores. Measurements were taken in June 1992 during the surface of the ocean, fluxes and interaction with the atmosphere campaign, which took place during the Atlantic stratocumulus transition experiment. The dust source is identified to be in north Morocco from a TM2z back-trajectory analysis. Lidar observations over the Azores show that the dust is maintained in multiple thin layers (few hundred meters) up to 5 km altitude after a 4-day transport. Horizontal gradients are less marked, with a typical scale of variation of about 5 km. Lidar inversions yield dust optical thicknesses from 0.1 to 0.16 mainly due to two layers centered at 1.3 and 3.7 km. Since the weather was extremely cloudy over this region, the dust plume was not observable on the coincident Meteosat image. We thus processed the image taken two days earlier that clearly shows a dust plume between Azores and Spain. The Meteosat inversion was constrained by using the airborne lidar measurements in the marine boundary layer. The retrieved dust optical thicknesses are in good agreement with that retrieved from the lidar. Coherence of both lidar and radiometry measurements suggests that such a combined analysis is promising for retrieving the optical thickness of elevated dust layers as well as their spatial extent outside the source region even under cloudy conditions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号