首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A comparison of air particulate matter and associated polycyclic aromatic hydrocarbons in some tropical and temperate urban environments
Institution:1. School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China;2. State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;3. School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
Abstract:A 12 month study of urban concentrations of total suspended particulates (TSP) and 20 polycyclic aromatic hydrocarbons (PAH) was carried out in Seoul (South Korea), Hong Kong, Bangkok (Thailand), Jakarta (Indonesia) and Melbourne (Australia). Concentrations of particulate matter in the atmosphere varied widely between the cities over the course of the study, ranging from a low of 24.1 μg m?3 in Melbourne during the winter to a high of 376.2 μg m?3 in Jakarta during the dry season. Seasonal variations in both TSP and PAH were observed in the tropical cities in the study with higher concentrations during the dry season and lower concentrations during the wet season. TSP and PAH concentrations are correlated with each other in these cities, suggesting that they have related sources and sinks for these cities. In the temperate cities of Melbourne and Seoul, PAH concentrations were higher during the cold winter season and lower during the warm summer. However, TSP was quite variable over the years in these latter cities and no clear seasonal trend was observed. A number of factors have been investigated which could be contributing to seasonal variations in pollutant levels. In the temperate climates, increased emissions due to the use of fossil fuels for heating in the winter is evident. However, an interrogation of the database with respect to the other factors such as (1) increased photolytic degradation during the summer, (2) transport of pollutants from other sources, (3) removal of PAH via wet deposition and in-cloud scavenging mechanisms and (4) volatilisation of lower molecular weight species during periods of high temperature indicates the importance of multiple processes. Even though there are clearly much lower levels of both particulates and PAH in the wet season of the tropical climates, no statistically significant correlations have been observed between rainfall levels and pollutant concentrations.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号