首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An application of the theory of kinematics of mixing to the study of tropospheric dispersion
Authors:Janusz A Pudykiewicz  Anna S Koziol
Institution:a1Atmospheric Environment Service1 2121 Trans-Canada Highway Dorval, Québec, Canada H9P 1J3
Abstract:The most common technique used for numerical simulations of tracer mixing is that of the numerical solution of the advection–diffusion equation with the unresolved fluxes parameterized using the similarity theory. Despite correct predictions of the overall directions of transport, models based on a numerical solution of the advection–diffusion equation lack sufficient accuracy to correctly reproduce the coupling of mixing with small scale processes which are sensitive to the microstructure of the tracer distribution. The objective of this paper is to revisit the basic formalism employed in numerical models used to investigate atmospheric tracers. The main mathematical method proposed here is the theory of kinematics of mixing which could be applied effectively for simulations of atmospheric transport processes. At the beginning of the paper, we introduce simple mathematical transformations in order to demonstrate how complex topological structures are created by mixing processes. These idealistic flow systems are essential to explain transport properties of much more complex three-dimensional geophysical flows. An example of the application of the kinematics of mixing to the analysis of tracer transport on a planetary scale is presented in the following sections. The complex filamentary structures simulated in the numerical experiment are evaluated using some commonly applied statistical measures in order to compare the results with the data published in the literature. The results of the experiment are also analysed with the help of simple conceptual models of fluid filaments. The microstructure of the tracer distribution introduced in the paper is essential to increase our understanding of atmospheric transport and to develop more realistic parameterizations of small-scale mixing. The presented results could also be used to improve calculations of the coupling between microphysical processes and tracer mixing.
Keywords:Atmospheric tracers  fluid filaments  Lyapunov exponent  mixing of fluids  tropospheric dispersion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号