首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Aqueous free radical chemistry of mercury in the presence of iron oxides and ambient aerosol
Authors:Che-jen Lin  Simo O Pehkonen
Institution:Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0071, U.S.A.
Abstract:The effect of goethite (α-FeOOH), hematite (α-Fe203) and maghemite (γ-Fe203) on the aqueous photoreduction of divalent mercury with organic acids (oxalate, formate and acetate) is investigated. Laboratory photochemistry experiments with synthetic iron oxides and simulated sunlight were performed to assess the role of the oxides on the photoreduction. Ambient aerosol was also collected and introduced as the solid phase to compare its effect with that of synthetic oxides. It is observed that the presence of various iron oxides or aerosol particles enhances the photoreduction. It is also found that the hydroxyl radicals produced in the hematite-oxalate systems can re-oxidize the reduced mercury back to Hg(II). Based on the experimental observations, mechanisms responsible for the Hg(II) reduction are proposed. The kinetics of Hg0 oxidation by hydroxyl radicals was also studied by a steady-state kinetic technique using nitrate photolysis as the * OH radical source. The second-order rate constant is determined to be 2.0 × 109 M s−1. The implications of the studied reactions on the atmospheric chemistry of mercury are discussed.
Keywords:Mercury transformations  photochemistry  hydroperoxyl radicals  hydroxyl radicals  redox  atmospheric waters  heterogeneous reactions
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号