首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Tetracycline removal enhancement with Fe-saturated nanoporous montmorillonite in a tripartite adsorption/desorption/photo-Fenton degradation process
Authors:Chahardahmasoumi  Shiva  Jalali  Seyed Amir Hossein  Sarvi  Mehdi Nasiri
Institution:1.Department of Mining Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran
;2.Department of Natural Resources, Isfahan University of Technology, 84156-83111, Isfahan, Iran
;3.Institute of Biotechnology and Bioengineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran
;
Abstract:

The adsorption and photo-Fenton degradation of tetracycline (TC) over Fe-saturated nanoporous montmorillonite was analyzed. The synthesized samples were characterized using XRD, FTIR, SEM, and XRF analysis, and the adsorption and desorption of TC onto these samples, as well as the antimicrobial activity of TC during these processes, were analyzed at different pH. Initially, a set of adsorption/desorption experiments was conducted, and surprisingly, up to 50% of TC adsorbed was released from Mt structure. Moreover, the desorbed TC had strong antibacterial activity. Then, an acid treatment (for the creation of nanoporous layers) and Fe saturation of the montmorillonite were applied to improve its adsorption and photocatalytic degradation properties over TC. Surprisingly, the desorption of TC from modified montmorillonite was still high up to 40% of adsorbed TC. However, simultaneous adsorption and photodegradation of TC were detected and almost no antimicrobial activity was detected after 180 min of visible light irradiation, which could be due to the photo-Fenton degradation of TC on the modified montmorillonite surface. In the porous structures of modified montmorillonite high, ˙OH radicals were created in the photo-Fenton reaction and were measured using the Coumarin technique. The ˙OH radicals help the degradation of TC as proposed in an oxidation process. Surprisingly, more than 90% of antimicrobial activity of the TC decreased under visible light (after 180 min) when desorbed from nanoporous Fe-saturated montmorillonite compared to natural montmorillonite. To the best of our knowledge, this is the first time that such a high TC desorption rate from an adsorbent with the least residual antimicrobial activity is reported which makes nanoporous Fe-saturated montmorillonite a perfect separation substance of TC from the environment.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号