首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Kinetics of OH radical reactions with dibenzo-p-dioxin and selected chlorinated dibenzo-p-dioxins
Authors:Taylor Philip H  Yamada Takahiro  Neuforth Amy
Institution:Environmental Engineering Group, University of Dayton Research Institute, 300 College Park, Dayton, OH 45469-0114, USA. taylor@udri.udayton.edu
Abstract:The pulsed laser photolysis/pulsed laser-induced fluorescence (PLP/PLIF) technique has been applied to obtain rate coefficients for OH + dioxin (DD) (k1), OH + 2-chlorodibenzo-p-dioxin (2-CDD) (k2), OH + 2,3-dichlorodibenzo-p-dioxin (2,3-DCDD) (k3), OH + 2,7-dichlorodibenzo-p-dioxin (2,7-DCDD) (k4), OH + 2,8-dichlorodibenzo-p-dioxin (2,8-DCDD) (k5), OH + 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TCDD) (k6), and OH + octachlorodibenzo-p-dioxin (OCDD) (k7) over an extended range of temperature. The atmospheric pressure (740 +/- 10 Torr) rate measurements are characterized by the following Arrhenius parameters (in units of cm3 molecule(-1) s(-1), error limits are 1 omega): k1(326-907 K) = (1.70+/-0.22) x 10(-12)exp(979+/-55)/T, k2(346-905 K) = (2.79+/-0.27) x 10(-12)exp(784+/-54)/T, k3(400-927 K) = 10(-12)exp(742+/-67)/T, k4(390-769 K) = (1.10+/-0.10) x 10(-12)exp(569+/-53)/T, k5(379-931 K) = (1.02+/-0.10) x 10(-12)exp(580+/-68)/T, k6(409-936 K) = (1.66+/-0.38) x 10(-12)exp(713+/-114)/T, k7(514-928 K) = (3.18+/-0.54) x 10(-12)exp(-667+/-115)/T. The overall uncertainty in the measurements, taking into account systematic errors dominated by uncertainty in the substrate reactor concentration, range from a factor of 2 for DD, 2-CDD, 2,3-DCDD, 2,7-DCDD, and 2,8-DCDD to +/- a factor of 4 for 1,2,3,4-TCDD and OCDD. Negative activation energies characteristic of an OH addition mechanism were observed for k1-k6. k7 exhibited a positive activation energy. Cl substitution was found to reduce OH reactivity, as observed in prior studies at lower temperatures. At elevated temperatures (500 K < T < 500 K), there was no experimental evidence for a change in reaction mechanism from OH addition to H abstraction. Theoretical calculations suggest that H abstraction will dominate OH reactivity for most if not all dioxins (excluding OCDD) at combustion temperatures (>1000 K). For OCDD, the dominant reaction mechanism at all temperatures is OH addition followed by Cl elimination.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号