首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dissolution kinetics of sub-millimeter Composition B detonation residues: role of particle size and particle wetting
Authors:Fuller Mark E  Schaefer Charles E  Andaya Christina  Lazouskaya Volha  Fallis Steve  Wang Chao  Jin Yan
Institution:a Shaw Environmental, Inc., 17 Princess Road, Lawrenceville, NJ 08648, USA
b University of Delaware, Newark, DE 19716, USA
c Naval Air Warfare Center Weapons Division, China Lake, CA 93555, USA
Abstract:The dissolution of the 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from microscale particles (<250 μm) of the explosive formulation Composition B was examined and compared to dissolution from macroscopic particles (>0.5 mm). The dissolution of explosives from detonation soot was also examined. The measured mass transfer coefficients for the microscale particles were one to two orders of magnitude greater than the macroscopic particles. When normalized to particle surface area, mass transfer coefficients of microscale and macroscale particles were similar, indicating that the bulk dissolution processes were similar throughout the examined size range. However, an inverse relationship was observed between the particle diameter and the RDX:TNT mass transfer rate coefficient ratio for dry-attritted particles, which suggests that RDX may be more readily dissolved (relative to TNT) in microscale particles compared to macroscale particles. Aqueous weathering of larger Composition B residues generated particles that possessed mass transfer coefficients that were on the order of 5- to 20-fold higher than dry-attritted particles of all sizes, even when normalized to particle surface area. These aqueous weathered particles also possessed a fourfold lower absolute zeta-potential than dry-attritted particles, which is indicative that they were less hydrophobic (and hence, more wettable) than dry-attritted particles. The increased wettability of these particles provides a plausible explanation for the observed enhanced dissolution. The wetting history and the processes by which particles are produced (e.g., dry physical attrition vs. aqueous weathering) of Composition B residues should be considered when calculating mass transfer rates for fate and transport modeling.
Keywords:RDX  TNT  Mass transfer  Colloid  Dissolution  Composition B
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号