首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Methods for sampling and analysis of tropospheric ethanol in gaseous and aqueous phases
Authors:Monod A  Bonnefoy N  Kaluzny P  Denis I  Foster P  Carlier P
Institution:Laboratoire de Chimie et Environnement, Université de Provence, case 29, 3 Place V. Hugo, 13331 Marseille Cedex 3, France. monod@up.univ-mrs.fr
Abstract:In this paper, we report on techniques for sampling and measuring ethanol in both the gas and aqueous phases of the lower troposphere. In the gas phase, the best sampling conditions were ensured by adsorption on Hayesep Q with a Chromosorb W AW coated with LiCl dryer (method 1) or by cryogenic trapping (method 2). An intercomparison campaign showed good agreement between both methods under various conditions. Method 1 (adsorption on Hayesep Q with dryer) is easier to set up and to carry away from the laboratory. Method 2 (cryogenic trapping) requires longer sampling time (up to 60 min while method 1 requires only 10-15 min). Method 1 is adapted to high concentrations of ethanol (>20 ppb) and low relative humidity (<30%). Method 2 gives more accurate results than method 1 for low ethanol concentrations (1-20 ppb). Comparing these results to previous studies, it is clear that sampling with appropriate solid adsorbents or with stainless steel canisters (with appropriate humidified air and short storage time) is adapted to urban or industrial environments where ethanol concentrations are high. Cryogenic sampling must be preferred for remote places where ethanol concentrations are low. Three techniques were tested for sampling ethanol in the liquid phase, namely solid phase microextraction, purge and trap injection, and direct injection. Among those, the latter was chosen for field measurements of ethanol in rain samples at an urban location. These first ever results at an urban location show concentrations ranging from <1 to 5 microM in rains, which agree with the expected range of concentrations. However, the purge and trap method showed detection limits that were 50 times lower and should be preferred for liquid phase ethanol measurements in rural and remote locations. Combining cryogenic trapping for the gas phase (method 2) and direct injection for the liquid phase is convenient and well adapted for a multiphase study of ethanol in the atmosphere, where simultaneous measurements in both phases are needed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号