首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Partitioning and bioaccumulation of cadmium in artificial sediment systems: application of a stable isotope tracer technique
Authors:Eimers M Catherine  Evans R Douglas  Welbourn P M
Institution:Environmental and Resource Studies, Trent University, Peterborough, Ont., Canada K9J 7B8. ceimers@trentu.ca
Abstract:The utility of stable isotope tracers for investigating the relationship between cadmium (Cd) partitioning in artificial sediment-water systems and Cd accumulation in a benthic detritivore (Asellus racovitzai, Isopoda) was explored. In the laboratory, Cd isotopes were applied to synthetic sediment and isotope concentrations were measured in sediment, overlying water and exposed asellids over a 10-day period. Isotope ratios measured in sediment and water were compared to ratios measured in asellids to determine whether Cd partitioning could predict metal bioaccumulation. Two different parameters which might affect Cd partitioning between the sediment and overlying water compartments were investigated: the chemical form in which Cd was added to systems, and the organic matter content of the sediment. To test the effect of chemical form on Cd partitioning, three isotopes of cadmium were individually applied to formulated sediment in varying combinations of 113Cd(NO3)2, 112Cd-humic acid (HA) 114CdSO4. The results demonstrated that chemical form did not influence partitioning, as the Cd isotope that was applied to sediment in the nitrate form exhibited similar partitioning between sediment and overlying water as the isotope that was applied in the sulfate or HA form. However, Cd isotope concentrations in overlying water were strongly related to the pattern of isotope accumulation in asellids suggesting that overlying water concentrations determined Cd bioaccumulation. In contrast, when the organic matter content of sediment was increased through the addition of Sphagnum peat moss, total Cd concentrations in overlying water and tissue were low, and there was no relationship between Cd-isotope concentrations in tissue and water. These results indicate that Cd accumulation occurred primarily from water, and factors that increase metal partitioning to sediment, such as increased sediment organic matter content, decrease Cd accumulation in asellids. The stable isotope tracer method described herein appears to be a useful technique for investigating the relationship between metal partitioning and bioaccumulation in simple sediment systems, but could also be extended to more complex systems, and used with different metals that have multiple stable isotopes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号