首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions
Authors:Wu Jianfeng  Zheng Chunmiao  Chien Calvin C
Institution:Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, United States.
Abstract:A new simulation-optimization methodology is developed for cost-effective sampling network design associated with long-term monitoring of large-scale contaminant plumes. The new methodology is similar in concept to the one presented by Reed et al. (Reed, P.M., Minsker, B.S., Valocchi, A.J., 2000a. Cost-effective long-term groundwater monitoring design using a genetic algorithm and global mass interpolation. Water Resour. Res. 36 (12), 3731-3741) in that an optimization model based on a genetic algorithm is coupled with a flow and transport simulator and a global mass estimator to search for optimal sampling strategies. However, this study introduces the first and second moments of a three-dimensional contaminant plume as new constraints in the optimization formulation, and demonstrates the proposed methodology through a real-world application. The new moment constraints significantly increase the accuracy of the plume interpolated from the sampled data relative to the plume simulated by the transport model. The plume interpolation approaches employed in this study are ordinary kriging (OK) and inverse distance weighting (IDW). The proposed methodology is applied to the monitoring of plume evolution during a pump-and-treat operation at a large field site. It is shown that potential cost savings up to 65.6% may be achieved without any significant loss of accuracy in mass and moment estimations. The IDW-based interpolation method is computationally more efficient than the OK-based method and results in more potential cost savings. However, the OK-based method leads to more accurate mass and moment estimations. A comparison of the sampling designs obtained with and without the moment constraints points to their importance in ensuring a robust long-term monitoring design that is both cost-effective and accurate in mass and moment estimations. Additional analysis demonstrates the sensitivity of the optimal sampling design to the various coefficients included in the objective function of the optimization model.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号