首页 | 本学科首页   官方微博 | 高级检索  
     检索      


APCA Financial Statements for 1975-1976
Authors:Kirk P Lowery  Robert B Jacko
Institution:1. Trinity Consultants Incorporated , Overland Park , Kansas;2. Environmental and Hydraulic Engineering Area, School of Civil Engineering , Purdue University , West Lafayette , Indiana
Abstract:Abstract

A wind tunnel study was completed to determine the effects the presence of a parapet and raised intake configurations have on the dilution of a pollutant between a rooftop stack and building intake. This study was the first to address the effects of building parapets and varying intake configurations. A study of this kind is desirable because it is common practice for architects to attempt to hide stacks with the use of a parapet in order to make industrial buildings more aesthetically pleasing. This is done with no thought to the effect it may have on the intended function of the stacks, which is dispersing gases away from the building to avoid contamination of ventilation air.

Three parapet configurations (no parapet and two different parapet heights) and two intake configurations (flush and raised) were investigated. The relative effects of the parapets and the raised intake configurations were also compared and contrasted for five stack heights, two stack locations, and four intake locations.

The parapets were found to produce a cavity zone that extends above the building's roof by as much as two times the physical height of the parapet; increasing stack height had little effect on dispersion until the stack extended beyond this cavity region. The independent use of the parapets and raised intake configuration decreased the number of dilutions occurring between stack and intake when compared to the no parapet and flush intake configurations in all cases. Also substantiated in this study is the widely accepted view that the effect of the parapet addition is to decrease the effective stack height by the parapet height itself.

The results of this investigation were then compared to existing wind tunnel-derived empirical models. The models tested were not able to predict the effects of varying stack height and of varying the relative distance between stack and intake on the dilution of a pollutant between stack and intake under the tested configurations.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号