首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Statistical Form for the Ambient Participate Standard Annual Arithmetic Mean vs Annual Geometric Mean
Authors:David T Mage
Institution:U. S. Environmental Protection Agency Environmental Monitoring Systems Laboratory
Abstract:Abstract

The long-term stability of a biofilter loaded with waste gases containing NH3 concentrations larger than 100 ppmv was studied in a laboratory-scale compost reactor. At an empty bed residence time (τ) of 21 sec, elimination capacities of more than 300 g NH3/m3/day were obtained at elimination efficiencies up to 87%. Because of absorption and nitrification, almost 80% of the NH3-N eliminated from the waste gas could be recovered in the compost as NH4+-N or NO2 ?/NO3 ?-N. The high elimination capacities could be maintained as long as the NH4+/NOx concentration in the carrier material was less than 4 g NH4+/NOx ?-N/kg wet compost. Above this critical value, osmotic effects inhibited the nitrifying activity, and the elimination capacity for NH3 decreased. To restore the biofilter performance, a carbon source (methanol) was added to reduce NH4+/NOx ? accumulated in the compost. Results indicate that methylotrophic microorganisms did convert NH4+/NOx ? into biomass, as long as the NO3 ? content in the compost was larger than 0.1 g NO3 ?-N/kg compost. Removal efficiencies of CH3OH of more than 90% were obtained at volumetric loads up to 11,000 g CH3OH/m3/day. It is shown that addition of CH3OH is a suitable technique for regenerating the compost material from osmotic inhibition as a result of high NH3 loading. The biofilter was operated for 4 months with alternating loading of NH3 and CH3OH.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号