首页 | 本学科首页   官方微博 | 高级检索  
     检索      


HCI in Rocket Exhaust Clouds: Atmospheric Dispersion,Acid Aerosol Characteristics,and Acid Rain Deposition
Authors:G L Pellett  D I Sebacher  R J Bendura  D E Wornom
Institution:National Aeronautics and Space Administration , Langley Research Center , Hampton , Virginia , USA
Abstract:NASA is examining Space Shuttle launch impacts. Solid rocket exhaust includes ?60 tons HCL and ?87 tons alumina particles emitted below 2.5 km, of which 50-80% forms an altitude stabilized exhaust cloud (EC). Several 60% smaller Titan-Ill EC were sampled by aircraft for this study. Three distinct features are presented: (a) An analysis of HCL (gaseous plus aqueous) data traces. Total range of peak HCL was 25-0.5 ppm (3-300 min) for 8 EC. Power-law decays of peak HCL applied. Calculated HCL dispersions for 7 standard meteorologies are also shown, (b) An analysis of simultaneous HCL (g), HCL (g + aq) data for 2 EC. Vapor-liquid HCL/H2O equilibria were calculated for a flat surface aqueous aerosol. HCL partitioning varied with EC dilution and H2O content. HCL (aq) and aqueous mass fraction maximized early at >3 molal and >0.1 mg/g air. Calculated H2O (g + aq) compared favorably with independent EC measurements, (c) An analysis of wet deposition after EC interception at ?30 min by a convective storm. A 28 km2 acid chloride (1 < pH < 3) footprint was defined. In conclusion, (a) HCL dispersion in large EC tends to follow power-law decay, but HCL concentration may vary widely (100 times after 1 h) with meteorology, (b) HCL (g/aq) and H2O (g/aq) partitioning is consistent with equilibrated acid aerosol compositions, and (c) localized deposition of highly acidic rain may occur sometimes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号