首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An assessment of carbon stock for various land use system in Aravally mountains, Western India
Authors:J I Nirmal Kumar  Kanti Patel  Rita N Kumar  RohitKumar Bhoi
Institution:1. P.G. Department of Environmental Science and Technology, Institute of Science and Technology for Advanced Studies and Research (ISTAR), Vallabh Vidyanagar, 388 120, Gujarat, India
2. Department of Biological and Environmental Science, N.V. Patel College of Pure and Applied Sciences, Vallabh Vidyanagar, 388 120, Gujarat, India
Abstract:Reducing carbon emissions from deforestation and degradation in developing countries is of the central importance in efforts to combat climate change. A study was conducted to measure carbon stocks in various land-use systems including forms and reliably estimates the impact of land use on carbon (C) stocks in the forest of Rajasthan, western India (23°3′–30°12′N longitude and 69°30′–78°17′E). 22.8% of India is forested and 0.04% is the deforestation rate of India. In Indian forest sector of western India of Aravally mountain range covered large area of deciduous forest and it’s very helpful in carbon sequestration at global level. The carbon stocks of forest, plantation (reforestation) and agricultural land in aboveground, soil organic and fine root within forest were estimated through field data collection. Results revealed that the amount of total carbon stock of forests (533.64?±?37.54 Mg·ha?1, simplified expression of Mg (carbon) ·ha?1) was significantly greater (P?<?0.05) than the plantation (324.37?±?15.0 Mg·ha?1) and the agricultural land (120.50?±?2.17 Mg·ha?1). Soil organic carbon in the forests (172.84?±?3.78 Mg·ha?1) was also significantly greater (P?<?0.05) than the plantation (153.20?±?7.48 Mg·ha?1) and the agricultural land (108.71?±?1.68 Mg·ha?1). The differences in carbon stocks across land-use types are the primary consequence of variations in the vegetation biomass and the soil organic matter. Fine root carbon was a small fraction of carbon stocks in all land-use types. Most of the soil organic carbon and fine root carbon content was found in the upper 30-cm layer and decreased with soil depth. The aboveground carbon (ABGC): soil organic carbon (SOC): fine root carbon ratios (FRC), was 8:4:1, 4:5:1, and 3:37:1 for the forest, plantation and agricultural land, respectively. These results indicate that a relatively large proportion of the C loss is due to forest conversion to agricultural land.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号