首页 | 本学科首页   官方微博 | 高级检索  
     检索      

亚热带典型小流域总氮最大日负荷(TMDL)及影响因子研究——以金井河流域为例
引用本文:孟岑,李裕元,吴金水,周脚根,尹黎明,王毅,李勇.亚热带典型小流域总氮最大日负荷(TMDL)及影响因子研究——以金井河流域为例[J].环境科学学报,2016,36(2):700-709.
作者姓名:孟岑  李裕元  吴金水  周脚根  尹黎明  王毅  李勇
作者单位:1. 中国科学院亚热带农业生态研究所长沙农业环境观测研究站, 长沙 410125;2. 中国科学院亚热带农业生态研究所亚热带农业生态过程重点实验室, 长沙 410125;3. 中国科学院大学, 北京 100049,1. 中国科学院亚热带农业生态研究所长沙农业环境观测研究站, 长沙 410125;2. 中国科学院亚热带农业生态研究所亚热带农业生态过程重点实验室, 长沙 410125,1. 中国科学院亚热带农业生态研究所长沙农业环境观测研究站, 长沙 410125;2. 中国科学院亚热带农业生态研究所亚热带农业生态过程重点实验室, 长沙 410125,1. 中国科学院亚热带农业生态研究所长沙农业环境观测研究站, 长沙 410125;2. 中国科学院亚热带农业生态研究所亚热带农业生态过程重点实验室, 长沙 410125,湖南省水利水电科学研究所, 长沙 410007,1. 中国科学院亚热带农业生态研究所长沙农业环境观测研究站, 长沙 410125;2. 中国科学院亚热带农业生态研究所亚热带农业生态过程重点实验室, 长沙 410125,1. 中国科学院亚热带农业生态研究所长沙农业环境观测研究站, 长沙 410125;2. 中国科学院亚热带农业生态研究所亚热带农业生态过程重点实验室, 长沙 410125
基金项目:国家科技支撑计划项目(No.2014BAD14B02);国家自然科学基金(No.41171396);2015年度水利部公益性行业科研专项(No.201501055)
摘    要:本研究以亚热带红壤丘陵区为研究区域,选取10个典型小流域,根据土地利用和畜禽养殖密度分为4种类型(森林、森林-种植、养殖和种植-养殖小流域),并基于近3年小流域把口站的原位观测数据,采用负荷历时曲线模型(LDC)计算了不同类型小流域水体总氮(TN)的最大日负荷(TMDL),运用灰度分析法定量研究了不同流量阶段小流域主要因子对TN负荷消减率的影响.结果表明,小流域TN负荷特征与流域类型密切相关,10个小流域TN年均负荷为739.0~2798.4 kg·km-2·a-1,由小到大依次为森林、森林-种植、养殖、种植-养殖小流域,其中,养殖、种植-养殖小流域水质整体超标严重,且应针对中、低流量条件下(秋、冬季节)负荷进行消减,而森林-种植小流域TN负荷超标情况略好,但高流量阶段(春、夏)超标率过高.灰度分析结果表明,TN负荷消减率在高、中流量阶段下主要受农田面积比例影响,而低流量阶段受畜禽密度影响.农田面积比例对高、中流量段TN消减率影响显著,而畜禽养殖密度在低流量段具有更大影响,小流域景观越破碎、类型越丰富、斑块分布越零散、形状越复杂,TN负荷通量则越大.

关 键 词:TMDL  TN负荷  负荷历时曲线  灰度分析  亚热带小流域
收稿时间:4/7/2015 12:00:00 AM
修稿时间:2015/5/26 0:00:00

Study on total nitrogen TMDL and its contributing factors in typical subtropical watersheds: A case study of Jinjinghe watershed
MENG Cen,LI Yuyuan,WU Jinshui,ZHOU Jiaogen,YIN Liming,WANG Yi and LI Yong.Study on total nitrogen TMDL and its contributing factors in typical subtropical watersheds: A case study of Jinjinghe watershed[J].Acta Scientiae Circumstantiae,2016,36(2):700-709.
Authors:MENG Cen  LI Yuyuan  WU Jinshui  ZHOU Jiaogen  YIN Liming  WANG Yi and LI Yong
Institution:1. Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125;2. Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125;3. University of Chinese Academy of Sciences, Beijing 100049,1. Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125;2. Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125,1. Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125;2. Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125,1. Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125;2. Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125,Hunan Water Resources and Hydropower Research Institute, Changsha 410007,1. Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125;2. Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 and 1. Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125;2. Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125
Abstract:Agricultural non-point source pollution has become a great obstacle of modern agriculture and sustainable development of society. In this study, ten small watersheds, which were divided into 4 types (forest, forest-dominated, livestock production-dominated and plant-livestock production watersheds) by the land use patterns and livestock production distribution in a subtropical region of southern China, were investigated to study total nitrogen (TN) loads and their contributing factors. Load duration curve (LDC) method was applied to estimate total maximum daily load (TMDL) of TN under different flow conditions, and the key contributors of required load reductions were obtained by using by gray relational analysis (GRA) method. The results showed, the characteristics of TN loads in small watersheds were significantly depended on the type of watershed. The annual TN loads varied from 739.0 to 2798.4 kg·km-2 among the different types of watersheds. There were forest, forest-dominated, livestock production-dominated and plant-livestock production watersheds in ascending order, that livestock production-dominated and plant-livestock production watersheds observably exceed the TN TMDL under high and mid-range flow conditions, while high flow conditions was the major hydrologic conditions during which TN loss occurred in forest-dominated watersheds. Results of GRA suggest that cropland was the most important factors impacting on watershed daily reduction rate (DDR) under high and mid-range flow conditions, while livestock density was noticeable factors for DDR under low flow conditions. More fragmentation, diversity and scattered distribution of the landscape pattern would result in more TN losses at small watershed scale.
Keywords:total maximum daily load  total nitrogen load  load duration curves  gray relational analysis  subtropical watershed
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号