首页 | 本学科首页   官方微博 | 高级检索  
     检索      

南京市不同季节大气亚微米颗粒物化学组分在线观测研究
引用本文:胡丙鑫,汤莉莉,张宁红,张运江,蒋磊,崔玉航,花艳,杨笑笑.南京市不同季节大气亚微米颗粒物化学组分在线观测研究[J].环境科学学报,2017,37(3):853-862.
作者姓名:胡丙鑫  汤莉莉  张宁红  张运江  蒋磊  崔玉航  花艳  杨笑笑
作者单位:1. 南京信息工程大学江苏省大气环境与装备技术协同创新中心, 南京 210044;2. 江苏省大气环境监测与污染控制高技术研究重点实验室, 南京 210044,1. 南京信息工程大学江苏省大气环境与装备技术协同创新中心, 南京 210044;3. 江苏省环境监测中心, 南京 210036,江苏省环境保护厅, 南京 210036,1. 南京信息工程大学江苏省大气环境与装备技术协同创新中心, 南京 210044;5. INERIS, Verneuil en Halatte 60550;6. Laboratoire des Sciences du Climat et l''Environnement, CNRS-CEA-UVSQ, Gif sur Yvette 91191,1. 南京信息工程大学江苏省大气环境与装备技术协同创新中心, 南京 210044;2. 江苏省大气环境监测与污染控制高技术研究重点实验室, 南京 210044,1. 南京信息工程大学江苏省大气环境与装备技术协同创新中心, 南京 210044;2. 江苏省大气环境监测与污染控制高技术研究重点实验室, 南京 210044,1. 南京信息工程大学江苏省大气环境与装备技术协同创新中心, 南京 210044;2. 江苏省大气环境监测与污染控制高技术研究重点实验室, 南京 210044,1. 南京信息工程大学江苏省大气环境与装备技术协同创新中心, 南京 210044;2. 江苏省大气环境监测与污染控制高技术研究重点实验室, 南京 210044
基金项目:国家自然科学基金重大研究计划(No.D0512,91544231);江苏省环保科研课题(No.2015017);江苏省环境监测科研基金项目(No.1016,1202)共同资助
摘    要:本研究利用Aerodyne气溶胶化学组分监测仪在典型冬季重污染(12月)和夏季(8月)时期分别对南京城市大气非难熔性亚微米细颗粒物(NR-PM1)进行连续在线观测.结果表明,NR-PM1的组分平均贡献为(8月,12月):有机物(51.8%,44%)、硝酸盐(12.8%,23%)、硫酸盐(20.9%,13%)、铵盐(14%,16.8%)、氯化物(0.5%,3.2%).硝酸盐和硫酸盐在8月和12月呈现不同的日变化,如硝酸盐在12月白天呈现增加趋势,表明白天光化学作用对硝酸盐形成起主导作用;12月高浓度的硫酸盐在较高相对湿度的夜间被观测到,而8月在午后出现峰值,这表明在12月和8月硫酸盐的形成可能分别被液相生成和气相光化学作用驱动.8月臭氧污染期间,硝酸盐通过非均相反应在夜间快速形成,日出后,SO_2-4和氧化态有机气溶胶(OOA)同时增加表明二次气溶胶的形成;12月霾污染期间,二次无机组分和具有较高氧化度的OOA逐渐增加.

关 键 词:ACSM  大气亚微米颗粒物  日变化  相对湿度
收稿时间:2016/5/13 0:00:00
修稿时间:2016/7/26 0:00:00

On-line measurements of atmospheric submicron aerosol particle composition during different seasons in Nanjing
HU Bingxin,TANG Lili,ZHANG Ninghong,ZHANG Yunjiang,JIANG Lei,CUI Yuhang,HUA Yan and YANG Xiaoxiao.On-line measurements of atmospheric submicron aerosol particle composition during different seasons in Nanjing[J].Acta Scientiae Circumstantiae,2017,37(3):853-862.
Authors:HU Bingxin  TANG Lili  ZHANG Ninghong  ZHANG Yunjiang  JIANG Lei  CUI Yuhang  HUA Yan and YANG Xiaoxiao
Institution:1. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044;2. Jiangsu Key Laboratory of Atmospheric Environmental Monitoring and Pollution Control, Nanjing 210044,1. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044;3. Jiangsu Environmental Monitoring Center, Nanjing 210036,Jiangsu Department of Environmental Protection, Nanjing 210036,1. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044;5. INERIS, Verneuil en Halatte 60550;6. Laboratoire des Sciences du Climat et l''Environnement, CNRS-CEA-UVSQ, Gif sur Yvette 91191,1. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044;2. Jiangsu Key Laboratory of Atmospheric Environmental Monitoring and Pollution Control, Nanjing 210044,1. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044;2. Jiangsu Key Laboratory of Atmospheric Environmental Monitoring and Pollution Control, Nanjing 210044,1. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044;2. Jiangsu Key Laboratory of Atmospheric Environmental Monitoring and Pollution Control, Nanjing 210044 and 1. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044;2. Jiangsu Key Laboratory of Atmospheric Environmental Monitoring and Pollution Control, Nanjing 210044
Abstract:Real-time compositional measurements of atmospheric submicron aerosol particle (NR-PM1) were conducted in urban Nanjing during heavy pollution episodes in December and August 2013 using an Aerodyne Aerosol Chemical Speciation Monitor. NR-PM1 compositions were organics (51.8% and 44%), nitrate (12.8% and 23%), sulfate (20.9% and 13%), ammonium (14% and 16.8%), and chloride (0.5% and 3.2%) in December and August, respectively. The secondary inorganic aerosols, e.g., sulfate and nitrate, showed quite different diurnal variations in December and August. For example, nitrate presented a gradual increase during daytime in December, suggesting that daytime photochemistry played a more important role in nitrate formation. The high concentration of sulfate was mainly observed under highly relative humidity (RH) conditions during nighttime in December, but it showed a significant noon peak during daytime in August. This means that the sulfate formation might be driven by RH-dependent pathway in December and gas-phase photochemical processing in August, respectively. During ozone pollution episodes in August, oxygenated OA (OOA) showed a significant enhancement along with sulfate during daytime, indicating regional influence on secondary aerosol formation. Both secondary inorganic and OOA presented a significant enhancement during heavy pollution episodes in December, highlighting the importance of regional secondary aerosols in the formation of severe pollution episodes in Nanjing.
Keywords:ACSM  atmospheric submicron aerosol particle  diurnal variations  relative humidity (RH)
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号