首页 | 本学科首页   官方微博 | 高级检索  
     检索      

APEC前后北京郊区大气颗粒物变化特征及其潜在源区分析
引用本文:杜朋,李德平,刘建国,张礁石,桂华侨,余同柱,王杰.APEC前后北京郊区大气颗粒物变化特征及其潜在源区分析[J].环境科学学报,2018,38(10):3846-3855.
作者姓名:杜朋  李德平  刘建国  张礁石  桂华侨  余同柱  王杰
作者单位:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室;中国科学院大学;安徽省环境光学监测技术重点实验室;暨南大学信息科学技术学院
基金项目:国家自然科学基金(No.91544218);国家重点研发计划(No.2016YFF0103004,2017YFC0209504);安徽省杰出青年科学基金(No.1808085J19)
摘    要:为分析2014年APE(Asia-Pacific Economic Cooperation)会议前后北京郊区大气颗粒物数浓度和质量浓度的变化特征及其主要影响因素,于当年11月在北京怀柔区中国科学院大学雁栖湖校区教学一楼楼顶利用微量振荡天平(TEOM)、扫描电迁移率颗粒物粒径谱仪(SMPS)和空气动力学粒径谱仪(APS)对大气颗粒物质量浓度和数浓度分布进行连续在线监测;同时结合地面气象参数和HYSPLIT轨迹模式,对颗粒物的来源和传输过程进行聚类、潜在源区贡献因子(PSCF)和浓度权重轨迹(CWT)分析.结果表明,APEC期间(11月5—11日)超细粒子(PM_(0.01~1))数浓度、细粒子(PM_(0.5~2.5))数浓度和粗粒子(PM_(2.5~10))数浓度分别为(17720.1±998.7)、(30.9±3.34)和(0.12±0.01) cm~(-3),比非APEC期间(即11月1—4日和11月12—30日)分别降低了28.8%、58.6%和64.7%;APEC期间ρ(PM_(2.5))为(36.1±2.4)μg·m~(-3),比非APEC期间降低55.5%.PM_(0.5~2.5)数浓度和PM_(2.5~10)数浓度降幅远大于PM_(0.01~1)数浓度,这表明APEC期间的减排措施对于PM_(0.5~2.5)和PM_(2.5~10)的控制效果优于PM_(0.01~1),说明APEC期间对PM_(0.5~2.5)、PM_(2.5~10)数浓度进行了更有效的控制.对北京气流后向轨迹聚类分析发现,来自蒙古国、内蒙古、河北西北部、河北南部方向的气流轨迹对应北京郊区的PM_(0.01~1)数浓度最高,为30593 cm~(-3),来自河北西北部、北京、天津、河北南部方向的气流轨迹对应北京郊区的PM_(0.5~2.5)、PM_(2.5~10)的数浓度及ρ(PM_(2.5))均为最高,分别为190 cm~(-3)、0.65 cm~(-3)、168μg·m~(-3).综合潜在源区贡献因子分析法(PSCF)和浓度权重轨迹分析(CWT)的结果分析发现,观测期间北京PM_(0.01~1)与PM_(0.5~2.5)、PM_(2.5~10)的潜在源区存在明显的区别,其中PM_(0.01~1)数浓度的潜在源区分布区域相对较广,主要分布在内蒙古中部、河北西北部、河北中南部和山西东北部等地区,而PM_(0.5~2.5)和PM_(2.5~10)数浓度的潜在源区分布基本一致,而且区域相对较集中,主要分布在河北北部、山西东北部和河北中南部等地区.APEC期间与非APEC期间ρ(PM_(2.5))的源区贡献因子分析和浓度权重轨迹分析表明,APEC期间ρ(PM_(2.5))的主要源区分布比非APEC期间相对较集中,主要位于北京当地、天津等附近地区,该地区对观测点ρ(PM_(2.5))的贡献值在24~40μg·m~(-3)之间.

关 键 词:大气颗粒物  PM2.5  气象参数  后向轨迹  聚类分析  PSCF  CWT
收稿时间:2018/4/12 0:00:00
修稿时间:2018/5/8 0:00:00

Pollution characteristics and potential source region analysis of atmospheric particulate matter during 2014 APEC in Beijing Surburban
DU Peng,LI Deping,LIU Jianguo,ZHANG Jiaoshi,GUI Huaqiao,YU Tongzhu and WANG Jie.Pollution characteristics and potential source region analysis of atmospheric particulate matter during 2014 APEC in Beijing Surburban[J].Acta Scientiae Circumstantiae,2018,38(10):3846-3855.
Authors:DU Peng  LI Deping  LIU Jianguo  ZHANG Jiaoshi  GUI Huaqiao  YU Tongzhu and WANG Jie
Institution:1. Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031;2. University of Chinese Academy of Sciences, Beijing 100049;3. Key Laboratory of Anhui Province for Environmental Optical Monitoring Technology, Hefei 230031,College of Information Science and Technology, Jinan University, Guangzhou 510632,1. Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031;2. Key Laboratory of Anhui Province for Environmental Optical Monitoring Technology, Hefei 230031,1. Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031;2. Key Laboratory of Anhui Province for Environmental Optical Monitoring Technology, Hefei 230031,1. Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031;2. Key Laboratory of Anhui Province for Environmental Optical Monitoring Technology, Hefei 230031,1. Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031;2. Key Laboratory of Anhui Province for Environmental Optical Monitoring Technology, Hefei 230031 and 1. Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031;2. Key Laboratory of Anhui Province for Environmental Optical Monitoring Technology, Hefei 230031
Abstract:
Keywords:atmospheric particulate matter  PM2  5  meteorological parameters  backward trajectories  clustering analysis  PSCF  CWT
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号