首页 | 本学科首页   官方微博 | 高级检索  
     检索      

粤港澳大湾区PM2.5本地与非本地污染来源解析
引用本文:王怡然,袁自冰,赵恺辉,张舒,张夏夏,李文石,谢岩,杨雷峰,刘启汉,郁建珍,岳玎利,谭振威.粤港澳大湾区PM2.5本地与非本地污染来源解析[J].环境科学学报,2020,40(5):1560-1574.
作者姓名:王怡然  袁自冰  赵恺辉  张舒  张夏夏  李文石  谢岩  杨雷峰  刘启汉  郁建珍  岳玎利  谭振威
作者单位:华南理工大学环境与能源学院,广州510006,华南理工大学环境与能源学院,广州510006,华南理工大学环境与能源学院,广州510006,华南理工大学环境与能源学院,广州510006,华南理工大学环境与能源学院,广州510006,华南理工大学环境与能源学院,广州510006,华南理工大学环境与能源学院,广州510006,华南理工大学环境与能源学院,广州510006,香港科技大学环境学部,香港999077,香港科技大学环境学部,香港999077,广东省环境监测中心,广州510308,澳门地球物理暨气象局,澳门999078
基金项目:国家自然科学基金重大研究计划重点支持项目(No.91644221);香港环境保护署项目(No.CE28/2014(EP),CE15/2016(EP))
摘    要:粤港澳大湾区(简称"大湾区")建设是我国新时代重大国家战略之一.虽然大湾区空气质量在我国处于领先地位,但与世界先进湾区相比还有较大差距.制定大湾区PM2.5精细化防控策略,需要在识别大湾区各城市PM2.5污染来源的基础上,量化PM2.5本地和非本地贡献及时空变化规律.基于此,本研究首次在大湾区15个站点同步开展持续一年的PM2.5采样和组分分析,并将正定矩阵因子分析模型与后向轨迹结合,建立一种定量识别PM2.5本地与非本地贡献的新方法.通过对大湾区不同季节所属空气域进行划分,厘清大湾区各城市PM2.5本地与非本地贡献的动态化特征.结果发现,在2015年,大湾区15个站点共解析出9种PM2.5污染源,分别为机动车、重油、老化海盐、扬尘源、二次硫酸盐、二次硝酸盐、金属冶炼、生物质燃烧和新鲜海盐.其中,二次硫酸盐和机动车是大湾区最主要的两个PM2.5污染源.不同站点非本地贡献占比为51%~72%,表明外来传输是大湾区 PM2.5污染的主要来源.内陆和沿海站点污染源的本地与非本地贡献差异较为显著,主要原因是气象条件和排放特征的差异.值得注意的是,2015年大湾区超过一半的时间处于同一个空气域,而有43%的时间处于两个不同空气域.进一步在每个季节划分空气域,发现大湾区处于两个空气域时,秋、冬季节沿海站点易形成单独的空气域,此时非本地贡献较强(68%~72%);春季内陆站点易形成单独的空气域,此时本地贡献较强(94%).基于对PM2.5本地和非本地贡献变化情况的定量识别,能够为大湾区各城市制定动态的PM2.5排放控制策略提供科学支撑.

关 键 词:PM2.5  正定矩阵因子分析  本地和非本地贡献  空气域  粤港澳大湾区(GBA)
收稿时间:2019/11/28 0:00:00
修稿时间:2020/1/9 0:00:00

Quantitative apportionment of local and non-local contributions to PM2.5 in the Guangdong-Hong Kong-Macao Greater Bay Area
WANG Yiran,YUAN Zibing,ZHAO Kaihui,ZHANG Shu,ZHANG Xiaxi,LI Wenshi,XIE Yan,YANG Leifeng,Alexis K. H. LAU,YU Jianzhen,YUE Dingli and Frankie C. V. TAM.Quantitative apportionment of local and non-local contributions to PM2.5 in the Guangdong-Hong Kong-Macao Greater Bay Area[J].Acta Scientiae Circumstantiae,2020,40(5):1560-1574.
Authors:WANG Yiran  YUAN Zibing  ZHAO Kaihui  ZHANG Shu  ZHANG Xiaxi  LI Wenshi  XIE Yan  YANG Leifeng  Alexis K H LAU  YU Jianzhen  YUE Dingli and Frankie C V TAM
Institution:School of Environment and Energy, South China University of Technology, Guangzhou 510006,School of Environment and Energy, South China University of Technology, Guangzhou 510006,School of Environment and Energy, South China University of Technology, Guangzhou 510006,School of Environment and Energy, South China University of Technology, Guangzhou 510006,School of Environment and Energy, South China University of Technology, Guangzhou 510006,School of Environment and Energy, South China University of Technology, Guangzhou 510006,School of Environment and Energy, South China University of Technology, Guangzhou 510006,School of Environment and Energy, South China University of Technology, Guangzhou 510006,Division of Environment, Hong Kong University of Science and Technology, Hong Kong 999077,Division of Environment, Hong Kong University of Science and Technology, Hong Kong 999077,Guangdong Environmental Monitoring Center, Guangzhou 510308 and Macao Meteorological and Geophysical Bureau, Macao 999078
Abstract:Development of Guangdong-Hong Kong-Macao Greater Bay Area (GBA) is one of the national strategies in China. Although at the leading position of China, air quality in the GBA is still far worse than those in other renowned bay areas in the world, e.g. San Francisco, New York and Tokyo. To formulate refined PM2.5 prevention and control strategies in GBA, it is essential to identify PM2.5 emission sources in different cities of GBA, and to quantitatively characterize local and non-local contributions and their spatio-temporal variations. In this study, based on the first-ever regionally integrated PM2.5 speciation dataset simultaneously collected at fifteen stations across the GBA in the entire year of 2015, we developed a novel approach by combining Positive Matrix Factorization source apportionment with an optimized backward trajectory analysis, in an aim to quantify local and non-local contributions to PM2.5. Local and non-local contributions were further quantified in different air-sheds during different seasons, which provides important implications for city-level dynamic control of PM2.5 over the GBA. In 2015, nine source factors were identified, including vehicle exhaust, residual oil, aged sea salt, crustal soil, secondary sulfate, secondary nitrate, trace metals, biomass burning and fresh sea salt. Secondary sulfate was the largest contributor to PM2.5, followed by vehicle exhaust. Non-local contributions accounted for 51%~72% at different sites, suggesting PM2.5 over the GBA were mainly transported from outside. Significant differences in local and non-local relative contributions existed between inland and coastal areas, which was largely driven by emission and meteorological conditions. We also highlighted that GBA was in a single air-shed for more than half of time in 2015 and split into two air-sheds for 43% of time. Seasonal analysis revealed that in the two-air-shed pattern, non-local sources contributed 68%~72% over coastal stations which formed a separated air-shed in autumn and winter. In comparison, for the inland stations which formed a separated air-shed in spring, local contribution was predominant (94%). Based on the quantitative identification of local and non-local contributions and their seasonal and spatial variations, this study provides scientific guidance in formulating dynamic and region-specific PM2.5 control measures over the GBA.
Keywords:PM2  5  positive matrix factorization  local and non-local separation  air-shed  Greater Bay Area(GBA)
本文献已被 万方数据 等数据库收录!
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号