首页 | 本学科首页   官方微博 | 高级检索  
     检索      

等离子体场内CeO2催化降解甲醇的表面活性氧物种来源与作用研究
引用本文:王雪青,黎欢毅,王邦芬,孙玉海,毛梦绮,吴军良,付名利,陈礼敏,叶代启.等离子体场内CeO2催化降解甲醇的表面活性氧物种来源与作用研究[J].环境科学学报,2019,39(8):2725-2734.
作者姓名:王雪青  黎欢毅  王邦芬  孙玉海  毛梦绮  吴军良  付名利  陈礼敏  叶代启
作者单位:华南理工大学环境与能源学院,广州,510006;华南理工大学环境与能源学院,广州510006;挥发性有机物污染治理技术与装备国家工程实验室,广州510006;广东省大气环境与污染控制重点实验室,广州510006
基金项目:国家重点研发计划(No.2016YFC0204200);国家自然科学基金(No.51678245,51578245);广东省自然科学基金(No.2014A030310431);广东省科技计划项目(No.2015A020215010,2015B020236002);广州市科技计划项目(No.201804020026)
摘    要:利用水热法制备了3种不同形貌(纳米棒、纳米颗粒、纳米立方体)的CeO_2催化剂,并通过比表面积测试(BET)、扫描电子显微镜(SEM)、拉曼光谱分析(Raman)、O_2程序升温脱附(O_2-TPD)手段表征其物理化学性质,结果发现,CeO_2纳米棒的表面氧空位和氧物种最多.等离子体与催化协同降解甲醇性能评价实验结果显示,CeO_2纳米棒展现出最好的催化性能.进一步设计实验(甲醇-TPD、不同气氛常温催化、催化剂内后置比较、O_3催化氧化)推测在等离子体场内CeO_2表面活性氧物种来源及其作用.结果表明:①在等离子体场内参与CeO_2表面催化反应的活性氧物种有两个来源,一是催化剂本身存在的表面氧物种,二是等离子体区域产生的短寿命物种及长寿命物种(主要是O_3),其中,O_3分解产生的活性氧物种是提高催化性能的主要因素.②不同形貌CeO_2由于表面氧空位含量不同,导致O_3在催化剂上分解产生的活性氧物种的量不同,最终影响等离子体催化性能.

关 键 词:低温等离子体  CeO2  甲醇  表面活性氧物种  来源与作用
收稿时间:2018/12/26 0:00:00
修稿时间:2019/1/9 0:00:00

Sources and roles of surface reactive oxygen species over CeO2 catalysts for methanol oxidation in plasma
WANG Xueqing,LI Huanyi,WANG Bangfen,SUN Yuhai,MAO Mengqi,WU Junliang,FU Mingli,CHEN Limin and YE Daiqi.Sources and roles of surface reactive oxygen species over CeO2 catalysts for methanol oxidation in plasma[J].Acta Scientiae Circumstantiae,2019,39(8):2725-2734.
Authors:WANG Xueqing  LI Huanyi  WANG Bangfen  SUN Yuhai  MAO Mengqi  WU Junliang  FU Mingli  CHEN Limin and YE Daiqi
Institution:School of Environment and Energy, South China University of Technology, Guangzhou 510006,School of Environment and Energy, South China University of Technology, Guangzhou 510006,School of Environment and Energy, South China University of Technology, Guangzhou 510006,School of Environment and Energy, South China University of Technology, Guangzhou 510006,School of Environment and Energy, South China University of Technology, Guangzhou 510006,1. School of Environment and Energy, South China University of Technology, Guangzhou 510006;2. National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006;3. Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006,1. School of Environment and Energy, South China University of Technology, Guangzhou 510006;2. National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006;3. Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006,1. School of Environment and Energy, South China University of Technology, Guangzhou 510006;2. National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006;3. Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006 and 1. School of Environment and Energy, South China University of Technology, Guangzhou 510006;2. National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006;3. Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006
Abstract:CeO2 with different morphologies (i.e. rod, particle, and cube) were prepared by a hydrothermal method and characterized by Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), Raman and oxygen temperature-programmed desorption (O2-TPD). The CeO2 rod catalyst presents the most surface oxygen species and oxygen vacancies. Then the catalysts were tested for methanol oxidation in plasma. The CeO2 rod exhibited the highest removal efficiency and CO2 selectivity. Experiments (methanol-TPD, catalytic reaction in different background gas at room temperature, comparison of in-plasma catalysis (IPC) and post-plasma catalysis (PPC), O3 catalytic oxidation) were further carried out to determine the sources and roles of surface active oxygen species over CeO2 in the plasma. Two sources of surface active oxygen species were involved in surface catalysis. One was the surface oxygen species present in the catalyst itself, the other was the short-lived species and long-lived species (mainly O3) in the plasma region. The oxygen species from O3 decomposition played the most important role in improving catalytic performance. Different morphologies of CeO2 had different amounts of oxygen vacancies, which led to different amounts of surface reactive oxygen species generated by O3 decomposition, which ultimately affected the performance of plasma-catalytic system.
Keywords:non-thermal plasma  CeO2  methanol  surface reactive oxygen species  source and role
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号