首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于OMI数据的四川盆地对流层甲醛时空分布特征
引用本文:古珊,杨显玉,吕世华,吴锴,陈智海,范武波,王浩霖,张芬芬,何沐全,刘天雅.基于OMI数据的四川盆地对流层甲醛时空分布特征[J].环境科学学报,2019,39(9):2860-2872.
作者姓名:古珊  杨显玉  吕世华  吴锴  陈智海  范武波  王浩霖  张芬芬  何沐全  刘天雅
作者单位:成都信息工程大学大气科学学院,高原大气与环境四川省重点实验室,成都610225;成都信息工程大学大气科学学院,高原大气与环境四川省重点实验室,成都610225;南京信息工程大学气象灾害预报预警与评估协同创新中心,南京210044;中国科学院西北生态环境资源研究院,寒旱区陆面过程与气候变化重点实验室,兰州730000;成都信息工程大学大气科学学院,高原大气与环境四川省重点实验室,成都610225;清华大学环境学院,北京100084;四川大学新能源与低碳技术研究院,成都610207;四川省环境保护科学研究院,成都610041;清华大学环境学院,北京,100084;广州气象卫星地面站,广州,510640
基金项目:国家重点研发计划(No.2016YFA0602704);国家自然科学基金重大研究计划(No.91644226);国家自然科学基金面上项目(No.41775016);成都信息工程大学科研基金(No.KYTZ201823,KYTZ201731);国家级大学生创新创业训练计划(No.201810621019)
摘    要:基于OMI卫星遥感反演的对流层甲醛柱浓度资料,对2005—2016年四川盆地对流层甲醛柱浓度的时空分布特征及其影响因素进行了分析.结果表明,12年间甲醛柱浓度年际变化总体呈上升趋势,年均增长率为1.17%.12年间甲醛柱浓度具有波动性,年均最低值和年均最高值分别出现于2005年和2012年.2005—2008年四川盆地甲醛柱浓度相对较低;2011年对流层甲醛柱浓度达到最大且高值区范围最大,2012年后浓度逐渐降低.四川盆地甲醛柱浓度季节变化表现为夏季春季秋季冬季.一年之中,月均甲醛柱浓度最小值基本出现在每年的11—12月,最大值则出现在6—8月.甲醛柱浓度空间分布的高值区主要分布在盆地内西南部的成都平原地区,低值区则多处于人为源排放较低的重庆东北部山区.能源消耗、生产总值及机动车保有量与对流层甲醛柱浓度具有显著的正相关关系.工业源、居民源和交通源排放对甲醛柱浓度具有重要贡献.四川盆地独特的地形及区域内风场对甲醛的扩散也有重要影响.

关 键 词:卫星遥感  甲醛柱浓度  时空分布  四川盆地
收稿时间:2019/3/9 0:00:00
修稿时间:2019/4/5 0:00:00

Spatiotemporal variations in OMI satellite-based tropospheric formaldehyde in Sichuan Basin
Institution:Plateau Atmosphere and Environment Key Laboratory of Sichuan Province/Joint Laboratory of Climate and Environment Change, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225,Plateau Atmosphere and Environment Key Laboratory of Sichuan Province/Joint Laboratory of Climate and Environment Change, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225,1. Plateau Atmosphere and Environment Key Laboratory of Sichuan Province/Joint Laboratory of Climate and Environment Change, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225;2. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044;3. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,1. Plateau Atmosphere and Environment Key Laboratory of Sichuan Province/Joint Laboratory of Climate and Environment Change, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225;2. School of Environment, Tsinghua University, Beijing 100084,Plateau Atmosphere and Environment Key Laboratory of Sichuan Province/Joint Laboratory of Climate and Environment Change, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225,Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207;6. Sichuan Academy of Environmental Sciences, Chengdu 610041,Plateau Atmosphere and Environment Key Laboratory of Sichuan Province/Joint Laboratory of Climate and Environment Change, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225,School of Environment, Tsinghua University, Beijing 100084,Guangzhou Meteorological Satellite Ground Station, Guangzhou 510640 and Plateau Atmosphere and Environment Key Laboratory of Sichuan Province/Joint Laboratory of Climate and Environment Change, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225
Abstract:Based on tropospheric formaldehyde column concentration data from OMI satellite, the temporal and spatial distribution characteristics of formaldehyde concentration were analyzed over Sichuan basin during 2005 to 2016. The impact factors which influence formaldehyde column concentration were discussed. The results showed an upward trend of tropospheric formaldehyde column concentration during 2005 to 2016. Moreover, the growth showed fluctuations rose during 2005 to 2016, and the average annual growth rate was 1.17%.And the annual minimum and maximum values appeared in 2005 and 2012, respectively. The formaldehyde column concentration in Sichuan basin was relatively low during 2005 to 2008 while its concentration level and the expansion of the area reached the maximum in 2011. However, the concentration level and its area decreased gradually after 2012. The comparison of the concentration level of formaldehyde column in the four seasons was: summer > spring > autumn > winter. Basically, the lowest value appeared during the months between November to December, and the highest value appeared during the months between June to August. As for the spatial distribution, there was a high concentration of formaldehyde column in Chengdu plain which located in southwestern of Sichuan basin, while low value areas were distributed over the northeast mountain area of Chongqing (with lower anthropogenic emissions). The influencing factors showed that the increase of industrial added value, GDP and motor vehicle ownership had positive effects on the formation and distribution of formaldehyde in the atmosphere. The study demonstrated the sources for the surge in formaldehyde concentration, which included industrial, residential and transportation sources. The unique topography and regional wind field in Sichuan basin also have important effects on the diffusion of formaldehyde.
Keywords:satellite remote sensing  HCHO column concentration  spatial-temporal variations  Sichuan Basin
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号