首页 | 本学科首页   官方微博 | 高级检索  
     检索      

耐热复合菌系强化全程高温堆肥快速处理餐厨垃圾
引用本文:宋彩红,齐辉,魏自民,夏训峰.耐热复合菌系强化全程高温堆肥快速处理餐厨垃圾[J].环境工程,2021,39(5):111.
作者姓名:宋彩红  齐辉  魏自民  夏训峰
作者单位:聊城大学生命科学学院,山东聊城252000;东北农业大学生命科学学院,哈尔滨150030;中国环境科学研究院,北京100012
基金项目:国家水体污染控制与治理科技重大专项(2015ZX07103-007-03);国家自然科学基金(51978131)。
摘    要:为进一步提升全程高温堆肥效率,经筛选和高温驯化,获得高有机质降解效率的耐热复合菌系(TMC),设置全程高温接种TMC堆肥组(T1)、全程高温堆肥组(T2)和常温堆肥组(T3),通过理化指标、粗脂肪和粗蛋白含量、GI等指标的检测和优势细菌演替规律分析,以揭示TMC对全程高温堆肥工艺的影响。结果显示:堆肥结束后有机质含量、C/N、粗脂肪和蛋白含量降幅顺序均为T1>T2>T3(P<0.05),且两两处理之间均具有显著性差异,证明TMC可缩短全程高温堆肥进程。堆肥第14天,T1、T2处理的GI值分别为110%和99%,T3处理仅为80%,表明全程高温堆肥可加速植物毒性物质降解,显著提高堆肥品质,而TMC接种可进一步促进堆肥无害化。PCR-DGGE结果表明:T1、T2处理均显著提高了耐热细菌和耐热木质纤维素降解菌多样性,且并未降低嗜中温木质纤维素降解菌多样性;2类降解菌协同配合实现木质纤维素的更快降解,有利于缩短堆肥进程。综上所述,TMC接种可显著提高全程高温堆肥效率、提升堆肥品质。

关 键 词:耐热复合菌系  全程高温  快速堆肥  餐厨垃圾
收稿时间:2020-08-05

HIGH-SPEED TREATMENT OF FOOD WASTE BY CONTINUOUS HIGH-TEMPERATURE COMPOSTING ENHANCED BY THERMOPHILIC MICROBIAL CONSORTIUM
Institution:1. Life Science College, Liaocheng University, Liaocheng 252000, China;2. Chinese Research Academy of Environmental Science, Beijing 100012, China;3. School of Life Sciences, Northeast Agricultural University, Harbin 150030, China
Abstract:In order to further improve the disposing efficiency of continuous high-temperature composting disposing food waste, we obtained thermophilic microbial consortium (TMC) degrading organic matter efficiently, by screening and high-temperature domestication. Three treatments, including continuous high-temperature composting with (T1) and without TMC inoculation (T2) and natural composting (T3) were set. The influence of TMC inoculation on continuous high-temperature composting process was revealed by comparison of physical and chemical indexes, crude fat and protein content and GI index and analysis of dominant bacterial succession law. Results showed that the decreased levels of organic matter content, C/N, crude fat and protein content were all in order of T1>T2>T3 after composting. The above indicators were significantly different among T1, T2 and T3 (P<0.05). These results confirmed that inoculation of TMC could accelerate the continuous high-temperature composting process and improve composting efficiency. On the 14th day of composting, the GI was 110% and 99% in T1 and T2 treatment respectively, but that of T3 treatment was only 80%, indicating that the continuous high-temperature composting could accelerate the degradation of phytotoxic substances and significantly improve compost quality. TMC inoculation could further promote harm-free compost. PCR-DGGE results showed that the diversities of thermophilic or heat-resistant bacteria and heat-resistant lignocellulose-degrading bacteria increased remarkably in T1 and T2 treatment. At the same time, mesophilic lignocellulose-degrading bacterial diversity did not decrease. Two kinds of bacteria cooperated to achieve faster degradation of lignocellulose, which was helpful in shortening food waste composting process. In conclusion, TMC inoculation could significantly improve the efficiency of continuous high-temperature composting and food waste compost quality.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《环境工程》浏览原始摘要信息
点击此处可从《环境工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号