首页 | 本学科首页   官方微博 | 高级检索  
     检索      

麦田O3干沉降过程及不同沉降通道分配的模拟
引用本文:徐静馨,郑有飞,麦博儒,赵辉,储仲芳,黄积庆,袁月.麦田O3干沉降过程及不同沉降通道分配的模拟[J].中国环境科学,2018,38(2):455-470.
作者姓名:徐静馨  郑有飞  麦博儒  赵辉  储仲芳  黄积庆  袁月
作者单位:1. 中国气象局气溶胶与云降水重点开放实验室, 江苏 南京 210044; 2. 南京信息工程大学, 江苏省大气环境与装备技术协同创新中心, 江苏 南京 210044; 3. 中国气象局广州热带海洋气象研究所/广东省区域数值天气预报重点实验室, 广东 广州 510080
基金项目:国家自然科学基金资助项目(41475108,41575110);江苏省普通高校研究生科研创新计划资助项目(KYLX_0837)
摘    要:利用涡度相关系统对南京地区冬小麦田和裸土期O3干沉降过程进行观测的基础上,引入Surfatm-O3干沉降模型,对其叶片气孔阻力(Rsleaf)、土壤阻力(Rsoil)和表面阻力(Rcut)的公式进行参数化修订和验证,开展了冬小麦主要生育期的总O3通量(FO3)、干沉降速率(Vd)及其不同沉降通道分配的模拟,并间接分析了土壤排放的NO与O3的化学反应对O3干沉降过程的影响.结果表明:冬小麦田FO3和Vd的实测值与模拟值趋势相似,平均实测和模拟Vd值分别为0.39和0.37cm/s,模拟值比实测值低估5.3%,其中每一个独立阻力公式的模拟效果均较好.平均非气孔沉降(表面沉降和土壤沉降)是O3干沉降主要的沉降通道,占总O3通量的68.8%,表面沉降占非气孔沉降的46.7%;平均绿叶和黄叶气孔沉降分别占总O3通量的28.6%和2.6%.白天非气孔沉降比例减小至占总O3通量的58.8%,绿叶和黄叶的气孔沉降比例比值增大,分别占总O3通量的37.7%和3.5%.夜晚表面沉降和土壤沉降分别占总O3通量的64.3%和35.7%.土壤排放的NO会与O3产生化学反应,对O3干沉降过程产生影响,需要在今后的O3干沉降模型中考虑.

关 键 词:Surfatm-O3模型  麦田  O3干沉降  不同沉降通道分配  模拟  
收稿时间:2017-06-19

Simulating and partitioning ozone flux in winter wheat field: the Surfatm-O3 model
XU Jing-xin,ZHENG You-fei,MAI Bo-ru,ZHAO Hui,CHU Zhong-fang,HUANG Ji-qing,YUAN Yue.Simulating and partitioning ozone flux in winter wheat field: the Surfatm-O3 model[J].China Environmental Science,2018,38(2):455-470.
Authors:XU Jing-xin  ZHENG You-fei  MAI Bo-ru  ZHAO Hui  CHU Zhong-fang  HUANG Ji-qing  YUAN Yue
Abstract:Terrestrial ecosystems are not only the major sink for ozone, but also a critical control of surface-level ozone budget. However, due to its deleterious effects, plant functioning is affected by the ozone absorbed. It is thus very necessary to predict total ozone deposition to ecosystems and partition the different deposition pathways (stomatal pathway and non-stomatal pathway). Based on observations of the ozone dry deposition of winter wheat and bare-soil field in Nanjing by the eddy-correlation system, the Surfatm-O3 dry deposition model were added in order to modify and validate parameters of the leaf stomatal resistance (Rsleaf), soil resistance (Rsoil) and cuticular resistance (Rcut). Then the simulations of the total ozone flux (FO3) of main growth stages in Winter Wheat, dry deposition velocity (Vd) and their distributions of different deposition pathways were carried out, and the impacts of chemical reactions between NO from the soil and ozone on the ozone dry deposition process were also analyzed indirectly. The results showed the simulations and measurements of FO3 and Vd had the similar trend, and the average values of measured Vd and modelled Vd were 0.39 and 0.37cm/s, respectively. Compared with measurements, the simulations underestimated by 5.3%. The average non-stomatal deposition pathway (cuticular deposition and soil deposition) is the main pathway of ozone dry deposition, accounting for 68.8% of the total ozone flux, in which cuticular deposition was accounted for 46.7% of non-stomatal deposition. The average green and yellow leaf stomatal deposition accounted for 28.6% and 2.6% of the total ozone flux respectively. During the daytime, the proportion of non-stomatal deposition decreased to 58.8%, and the ratios of green and yellow leaf stomatal deposition increased, accounting for 37.7% and 3.5% of the total ozone flux, respectively. During the nighttime, cuticular deposition and soil deposition accounted for 64.3% and 35.7% of total ozone flux, respectively. The soil NO emission affected the dry ozone deposition process by ozone chemical reaction, which should be considered in the future ozone dry deposition model.
Keywords:Surfatm-O3 model  winter wheat field  ozone dry deposition  different deposition pathways  simulation  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国环境科学》浏览原始摘要信息
点击此处可从《中国环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号