首页 | 本学科首页   官方微博 | 高级检索  
     检索      

北京市开发区PM1污染特征及影响霾形成的因素
引用本文:韩力慧,向欣,张海亮,王红梅,闫海涛,程水源,王海燕.北京市开发区PM1污染特征及影响霾形成的因素[J].中国环境科学,2018,38(8):2846-2856.
作者姓名:韩力慧  向欣  张海亮  王红梅  闫海涛  程水源  王海燕
作者单位:北京工业大学环境与能源工程学院, 区域大气复合污染防治北京市重点实验室, 北京 100124
基金项目:国家环保部公益性行业科研专项(201409003),国家留学基金委项目(201406545022),北京市教委)项目(PXM2016_014204_001029_00205967_FCG)
摘    要:通过采集北京市亦庄经济技术开发区2016年7月和10月、2017年1月和4月4个季节典型代表月大气亚微米颗粒物PM1样品,分析研究了该开发区PM1及其水溶性离子组分的季节变化以及不同污染时段的变化特征,揭示了影响二次组分形成和霾污染形成的重要因素.结果表明:研究期间开发区PM1平均浓度为73.95μg/m3,高于北京市同期估算的PM1平均水平,为其1.13倍.夏、秋、冬、春4季PM1平均浓度分别为69.22,63.38,99.50,57.26μg/m3,明显呈现出冬季 > 夏季 > 秋季 > 春季的季节变化特征,各季节霾天PM1浓度是清洁天的1.78~3.17倍.PM1中总水溶性离子浓度为37.30μg/m3,占PM1总质量浓度的50.44%,其中二次组分SO42-、NO3-和NH4+(SNA)平均浓度占总水溶性离子浓度的86.98%,是PM1中水溶性离子的最主要组成部分.PM1总水溶性离子浓度的季节变化与SNA的变化一致,表现为冬季 > 夏季 > 秋季 > 春季.研究期间硫氧化率(SOR)高于氮氧化率(NOR),且SOR表现为夏 > 秋 > 冬 > 春,而NOR表现为夏 > 秋~春 > 冬,相应霾污染天SOR和NOR均显著高于清洁天,其中夏季霾天SO2和NO2的二次转化过程最为显著.SO2向SO42-的转化主要受相对湿度RH、温度T、NO2以及NH3的影响,且液相反应是硫酸盐形成的重要途径.NO2向NO3-的转化受RH、T、O3以及NH3的影响较大.鞍型气压场、均压场、逆温层以及南、东南和西南方向为主的近地面偏弱气团传输是影响霾污染形成的重要因素.

关 键 词:亦庄开发区  PM1  理化特性  SNA  霾污染  气象要素  
收稿时间:2018-01-15

Pollution characteristics of PM1 and factors affecting the formation of haze pollution at a developed zone in Beijing
HAN Li-hui,XIANG Xin,ZHANG Hai-liang,WANG Hong-mei,YAN Hai-tao,CHENG Shui-yuan,WANG Hai-yan.Pollution characteristics of PM1 and factors affecting the formation of haze pollution at a developed zone in Beijing[J].China Environmental Science,2018,38(8):2846-2856.
Authors:HAN Li-hui  XIANG Xin  ZHANG Hai-liang  WANG Hong-mei  YAN Hai-tao  CHENG Shui-yuan  WANG Hai-yan
Institution:Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
Abstract:A campaign of sampling atmospheric submicron particulate matter (PM1) samples at Yizhuang zone in Beijing during July, October 2016 and January, April 2017, was carried out to investigate the characteristics of PM1 and itswater-solublespecies during four seasons and different haze periods. The important factors affecting the formations of the secondary ions and haze pollution were discussed. The results showed that the average concentration of PM1 reached 73.95μg/m3 for the entire study at Yizhuang zone, being 1.13times as high as the corresponding average concentration level of PM1 in Beijing. Average concentrations of PM1 in summer, autumn, winter and spring were 69.22, 63.38, 99.50 and 57.26μg/m3, respectively, showing the order of winter > summer > autumn > spring; the concentrations of PM1 during haze days were 1.78~3.17times as high as those in clean days. The total water-soluble ion concentration in PM1 was 37.30μg/m3, accounting for 50.44% of PM1; secondary ions SO42-、NO3- and NH4+ (SNA) were the most important water soluble ions, which accounted for 86.98% of the total water soluble ions. The seasonal variation of the total water soluble ion concentrations in PM1 was in accordance with SNA, following the order of winter > summer > autumn > spring. The average sulfur oxidation rate SOR was higher than the mean nitrogen oxidation rate NOR for the entire study, of which SOR presented the order of summer > autumn > winter > spring, and NOR showed the order of summer > autumn~spring > winter, and SORs and NORs in haze days were all significantly higher than those in clean days, especially in summer. The conversion of SO2 to SO42- was apparently influenced by relative humidity RH, temperature T, NO2 and NH3, and aqueous chemical reactions of SO2 on the surface of PM1 might be the important pathway of SO42- formations. The conversion of NO2 to NO3- was greatly influenced by RH, T, O3, and NH3. The haze pollution formation was mainly influenced by saddle type pressure field, even pressure field, and inversion layer, as well as weak air mass transport from the south, southeast and southwest directions.
Keywords:Yizhuang zone  PM1  physicochemical properties  SNA  haze pollution  meteorological factors  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国环境科学》浏览原始摘要信息
点击此处可从《中国环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号