首页 | 本学科首页   官方微博 | 高级检索  
     检索      

夏季滇池不同来源溶解性有机磷特征及其生物有效性
引用本文:何宗健,熊强,焦立新,王圣瑞.夏季滇池不同来源溶解性有机磷特征及其生物有效性[J].中国环境科学,2014,34(12):3189-3198.
作者姓名:何宗健  熊强  焦立新  王圣瑞
作者单位:南昌大学环境与化学工程学院;中国环境科学研究院;环境基准与风险评估国家重点实验室;中国环境科学研究院国家环境保护湖泊污染控制重点实验室;湖泊生态环境创新基地;
基金项目:国家自然科学基金项目(U1202235);国家水专项课题(2012ZX07102-004)
摘    要:夏季选取了滇池不同来源(滇池湖体、入湖河流和大气降雨)水样,研究了其溶解性有机磷(DOP)含量及分布特征,并利用酶水解技术表征了其DOP生物有效性.结果表明,滇池湖体、入湖河流和大气降雨DOP浓度分别在0.001~0.117,0.002~1.722,0.006~0.112mg/L(平均0.027,0.197,0.037mg/L),分别占溶解性总磷(DTP)的18.3%~92.5%,4.2%~100%,25.4%~100%(平均55.3%,60%,58.9%),不同来源DTP均以DOP为主,入湖河流DOP浓度明显高于滇池湖体和大气降雨.不同来源DOP酶可水解磷(EHP)浓度分别为n.d.~0.058,n.d.~0.673,n.d.~0.031mg/L(平均0.017,0.064,0.010mg/L),分别占DOP的0%~127.5%,0%~105.6%,0%~55.6%(平均77.9%,38.7%,23.2%).不同来源DOP酶水解率(EHP/DOP)较高,滇池湖体DOP酶水解率明显高于入湖河流和大气降雨.不同来源DOP时空分布特征明显,且其生物有效性存在较大差异.其中,滇池湖体EHP以活性单酯磷和类植酸磷为主,入湖河流和大气降雨EHP以活性单酯磷为主,尤其是大气降雨二酯磷和类植酸磷含量较少,滇池湖体、入湖河流和大气降雨DOP生物有效性依次降低.不同来源DOP是与溶解性反应磷(SRP)同等规模的生物可利用磷源,二者共同维持了滇池富营养化.滇池治理要从全流域出发,考虑不同来源各形态磷对水质的影响.

关 键 词:滇池  不同来源  DOP  EHP  生物有效性  
收稿时间:2014-03-10

Characteristics and bioavailability of dissolved organic phosphorus from different sources of Lake Dianchi in summer
HE Zong-Jian,XIONG Qiang,JIAO Li-Xin,WANG Sheng-Rui.Characteristics and bioavailability of dissolved organic phosphorus from different sources of Lake Dianchi in summer[J].China Environmental Science,2014,34(12):3189-3198.
Authors:HE Zong-Jian  XIONG Qiang  JIAO Li-Xin  WANG Sheng-Rui
Abstract:The content and distribution characteristics of dissolved organic phosphorus (DOP) were studied by collecting water samples from different sources of Dianchi Lake (overlying water, inflowing rivers and rainfall) in summer,and the bioavailability of these DOP were also characterized by emzymatic hydrolysis. The results indicated that the concentrations of DOP from overlying water, inflowing rivers and rainfall ranged from 0.001~0.117, 0.002~1.722 and 0.006~0.112mg/L (average, 0.027, 0.197 and 0.037mg/L), respectively, and constituted 18.3%~92.5%, 4.2%~100% and 25.4%~100% (average, 55.3%, 60% and 58.9%) of dissolved total phosphorus (DTP), respectively. DOP predominated their DTP of the different sources samples, and the concentrations of DOP from inflowing rivers were significantly higher than that from overlying water and rainfall. The concentrations of enzymatically hydrolysable phosphorus (EHP) of DOP from different sources ranged from not detectable (n.d.)~0.058, n.d.~0.673 and n.d.~0.031mg/L (average, 0.017, 0.064 and 0.010mg/L), accounting for 0~127.5%, 0~105.6% and 0~55.6% (average, 77.9%, 38.7% and 23.2%) of DOP, respectively. The enzymatica hydrolysis ratio of DOP (EHP/DOP) were relatively high and EHP/DOP from overlying water was significantly greater than that from inflowing rivers and rainfall. DOP from different sources showed evident characteristic of spatial and temporal distribution and their bioavailability had great differences.Labile monoester P and phytate-likeP represented primary portions of EHP from overlying water, whereas, labile monoester P accounted for major sections of EHP from the inflowing rivers and rainfall, especially for EHP of the rainfall which had relatively low concentrations of diester P and phytate-like P. The bioavailability of DOP from overlying water, inflowing rivers and rainfall declined in turn. DOP from different sources represented the available P of equivalent magnitude to soluble reactive phosphorus (SRP), that meant EHP and SRP keep the eutrophication of Dianchi Lake together. So the effects of different phosphorus species from different sources on water quality should be considered for protection of Dianchi Lake from the whole watersheds.
Keywords:Dianchi Lake  different sources  dissolved organic phosphorus (DOP)  enzymatically hydrolysable phosphorus (EHP)  bioavailability  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国环境科学》浏览原始摘要信息
点击此处可从《中国环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号