首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于改良ASM1的SNAD工艺启动和优化
引用本文:王朝朝,高鹏,闫立娜,殷耀兵,张欢,武新娟,殷春雨,马骏,李思敏.基于改良ASM1的SNAD工艺启动和优化[J].中国环境科学,2021,41(8):3590-3600.
作者姓名:王朝朝  高鹏  闫立娜  殷耀兵  张欢  武新娟  殷春雨  马骏  李思敏
作者单位:1. 河北工程大学能源与环境工程学院, 河北省水污染控制与水生态修复技术创新中心, 河北 邯郸 056038;2. 北京工业大学环境与能源工程学院, 北京 100124;3. 河北工程大学材料科学与工程学院, 河北 邯郸 056038
基金项目:河北省自然科学基金项目(E2021402011);河北省高校青年拔尖人才计划项目(BJ2019029);邯郸市科技研发计划项目(1623209044)
摘    要:采用微氧升流式膜生物反应器(UMSB-MBR)启动同步亚硝化-厌氧氨氧化耦合异养反硝化(SNAD)工艺,拟通过构建数学模型实现工艺启动过程分析及其优化过程预测.结果表明:反应器历经厌氧氨氧化和全程自养脱氮(CANON)工艺后,通过引入有机碳源(C/N比为0.5)启动SNAD工艺(总氮去除率可达87.66%),并运用ASM1模型及实验数据成功建立SNAD工艺启动模型;通过模型分析发现,氮负荷(NLR)的增大(由0.24~1.88kg/(m3·d)),适宜的溶解氧(DO)浓度(0.2~0.4mg/L)均有利于SNAD工艺的快速启动;通过模型预测发现,随着C/N比(由0.5~3.0)增大,反硝化菌(DNB)对厌氧氨氧化菌(AnAOB)活性的抑制程度不断增强,造成脱氮主要途径由厌氧氨氧化向异养反硝化过程转化,综合考虑C/N比为1.5时SNAD工艺效能和微生物菌群配置处于最佳状态.

关 键 词:厌氧氨氧化  同步亚硝化-厌氧氨氧化耦合异养反硝化(SNAD)  全程自养脱氮(CANON)  数学模型  AQUASIM  功能菌  
收稿时间:2020-12-25

Start-up and optimization of SNAD process based on modified ASM1
WANG Zhao-zhao,GAO Peng,YAN Li-na,YIN Yao-bin,ZHANG Huan,WU Xin-juan,YIN Chun-yu,MA Jun,LI Si-min.Start-up and optimization of SNAD process based on modified ASM1[J].China Environmental Science,2021,41(8):3590-3600.
Authors:WANG Zhao-zhao  GAO Peng  YAN Li-na  YIN Yao-bin  ZHANG Huan  WU Xin-juan  YIN Chun-yu  MA Jun  LI Si-min
Institution:1. Hebei Technology Innovation Center for Water Pollution Control and Water Ecological Remediation, School of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China;2. College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China;3. School of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, China
Abstract:An up-flow micro-oxygen membrane bioreactor (UMSB-MBR) was utilized to start up the simultaneous nitrification, anaerobic ammonia oxidation coupling with heterotrophic denitrification (SNAD) process, and a mathematical model was planned to be built to realize the start-up process analysis and the optimization process prediction. The results showed that the SNAD process (the total nitrogen removal rate of 87.66%) started up successfully by inducing the carbon source (C/N ratio of 0.5) after anammox and completely autotrophic nitrogen removal (CANON) processes in the bioreactor, and the start-up model of the SNAD process was successfully built using the ASM1model and experimental data; the model analysis revealed that the increase in the nitrogen loading rate (NLR) (from 0.24kg/(m3·d) to 1.88kg/(m3·d)) and the suitable dissolved oxygen(DO) (0.2~0.4mg/L) accelerated the start-up of the SNAD process; the model prediction revealed that the inhibition of anaerobic ammonia-oxidizing bacteria (AnAOB) from denitrifying bacteria (DNB) was strengthened with the increase in the C/N ratio (from 0.5 to 3.0), and shifted the major nitrogen removal pathway from anammox to heterotrophic denitrification process. From the comprehensive consideration, the appropriate C/N ratio should be chosen at 1.5under which the process performance and distribution of the microbial flora could be at the best state of the SNAD process.
Keywords:anammox  simultaneous nitritation  annmox and denitrification (SNAD)  completely autotrophic nitrogen removal (CANON)  mathematical model  AQUASIM  functional bacteria  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国环境科学》浏览原始摘要信息
点击此处可从《中国环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号