首页 | 本学科首页   官方微博 | 高级检索  
     检索      

气溶胶粒径吸湿增长与散射吸湿增长的关系
引用本文:张智察,倪长健,张城语,杨寅山,邓也.气溶胶粒径吸湿增长与散射吸湿增长的关系[J].中国环境科学,2020,40(12):5198-5204.
作者姓名:张智察  倪长健  张城语  杨寅山  邓也
作者单位:1. 成都信息工程大学大气科学学院, 高原大气与环境四川省重点实验室, 四川 成都 610225;2. 成都市环境保护科学研究院, 四川 成都 610072
基金项目:国家重点研发计划项目(2018YFC0214004,2018YFC1506006);四川省科技厅重点研发项目(2018SZ0287)
摘    要:基于成都市2017年10~12月AURORA-3000积分浊度计、AE-31黑碳仪和GRIMM180环境颗粒物监测仪的地面逐时观测资料,以及该时段同时次的环境气象监测数据(大气能见度、相对湿度RH和NO2质量浓度),通过Mie散射理论与免疫进化算法反演气溶胶粒径吸湿增长因子Gf(RH),并利用光学综合法测量气溶胶散射吸湿增长因子f(RH),探究了Gf(RH)与f(RH)之间的关系.结果表明:当RH<85%,Gf(RH)和f(RH)随RH的增加均表现为平缓式增长;当RH>85%,Gf(RH)和f(RH)随RH的增加则均呈现出爆发式增长.Sigmoid函数f(RH)=17.34/(1+e-2.43·Gf(RH)-2.15])较好地拟合了f(RH)随Gf(RH)的变化形态,其f(RH)拟合值与测量值之间的决定系数(R2)和平均相对误差(MRE)分别为0.97和4.01%.利用sigmoid函数计算Gf(RH),模拟了观测时段内一次灰霾演化过程中气溶胶的散射系数bsp(RH)和吸收系数bap,二者的模拟值与测量值基本吻合,对应的R2分别为0.99和0.98,MRE分别为2.94%和5.24%.

关 键 词:气溶胶  粒径  散射消光  吸湿增长  sigmoid函数  
收稿时间:2020-04-16

Relationship between particle size hygroscopic growth and scattering hygroscopic growth
ZHANG Zhi-cha,NI Chang-jian,ZHANG Cheng-yu,YANG Yin-shan,DENG Ye.Relationship between particle size hygroscopic growth and scattering hygroscopic growth[J].China Environmental Science,2020,40(12):5198-5204.
Authors:ZHANG Zhi-cha  NI Chang-jian  ZHANG Cheng-yu  YANG Yin-shan  DENG Ye
Institution:1. Plateau Atmospheres and Environment Key Laboratory of Sichuan Province, College of Atmospheric Science, Chengdu University of Information Technology, Chengdu 610225, China;2. Chengdu Academy of Environmental Sciences, Chengdu 610072, China
Abstract:By utilizing the ground-based monitored data at an hourly time step recorded by AURORA-3000 integrating nephelometer, AE-31 aethalometer and GRIMM180 environment particle monitor from October to December 2017 in Chengdu, as well as the coincidental environmental and meteorological data (including atmospheric visibility, relative humidity (RH) and NO2 mass concentration, respectively), researches in this paper were summarized as follows. Firstly, aerosols particle size hygroscopic growth factor Gf(RH) was retrieved by combining immune evolution algorithm with Mie scattering theory algorithm. Secondly, aerosols scattering hygroscopic growth factor f(RH) was measured with the aid of optical synthetic approach, and then, the relationship between Gf(RH) and f(RH) was further investigated. The results showed that both Gf(RH) and f(RH) grew mildly at RH<85%, while for RH>85%, the pattern changed to explosive growth. Sigmoid function f(RH)=17.34/(1+e-2.43·Gf(RH)-2.15]) could well fit the variation of f(RH) with Gf(RH), and the determining coefficient (R2) and the mean relative error (MRE) between the fitted f(RH) and the measured values are 0.97and 4.01%, respectively. Subsequently, the aerosols scattering coefficientbsp(RH)] and absorption coefficientbap] during an evolution of haze were further simulated with Gf(RH) calculated by the sigmoid function, and the simulated values were in good agree with the measured values. The corresponding R2are respectively 0.99and 0.98, and the corresponding MRE are respectively 2.94% and 5.24%.
Keywords:aerosol  particle size  scattering extinction  hygroscopic growth  sigmoid function  
点击此处可从《中国环境科学》浏览原始摘要信息
点击此处可从《中国环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号