首页 | 本学科首页   官方微博 | 高级检索  
     检索      

丹江口水库水体氮的时空分布及入库通量
引用本文:王书航,王雯雯,姜霞,赵丽,张博,吴德文,常乐.丹江口水库水体氮的时空分布及入库通量[J].环境科学研究,2016,29(7):995-1005.
作者姓名:王书航  王雯雯  姜霞  赵丽  张博  吴德文  常乐
作者单位:1.中国环境科学研究院, 环境基准与风险评估国家重点实验室, 北京 100012
基金项目:国家水体污染控制与治理科技重大专项(2012ZX07101-013)
摘    要:为解析丹江口水库水体氮的时空分布特征及主要污染来源,以丹江口库区及主要入库河流为研究对象,分析了水体氮的空间分布、季节及年际变化;利用回归分析,解析了氮污染驱动因素;并估算了入库河流氮通量及对库区氮污染负荷的贡献率. 结果表明:研究区水体ρ(TN)、ρ(NH4+-N)分别在0.07~16.73和0.01~10.65 mg/L之间,年均值分别为2.34和0.71 mg/L,空间分布呈入库河流高于库区的趋势;季节特征表现为春季、冬季>秋季>夏季. 2005—2014年库区水体ρ(TN)整体呈先升后降的趋势,其中取水口陶岔断面ρ(TN)上升较快,2012年较2007年增加了1.5倍,2013年开始ρ(TN)有所下降,但仍然维持在较高水平. 近10年来库区水体ρ(NH4+-N)始终维持在较低水平. 神定河、犟河、泗河、剑河等环库支流河口氮污染最严重,城镇化是造成流域水体氮污染的主要驱动力. 汉江TN入库量贡献最大,占63.0%,其中境外来水TN入库量占总量的59.2%,为达到丹江口水库生态环境保护要求的Ⅲ类水质(GB 3838—2002《地表水环境质量标准》)目标,汉江TN需削减量为16 715.0 t/a. 境内河流中,环库河流的TN入库量最大,其中泗河、老灌河、神定河、金钱河、犟河和天河等TN入库量较大,TN需削减量分别为 2 286.7、2 197.7、1 493.6、1 106.9、979.1和728.9 t/a. 

关 键 词:丹江口水库        时空变化    驱动因素    通量    污染负荷    贡献率
收稿时间:2015/11/12 0:00:00
修稿时间:2016/4/29 0:00:00

Spatial and Temporal Distribution and Flux of Nitrogen in Water of Danjiangkou Reservoir
WANG Shuhang,WANG Wenwen,JIANG Xi,ZHAO Li,ZHANG Bo,WU Dewen and CHANG Le.Spatial and Temporal Distribution and Flux of Nitrogen in Water of Danjiangkou Reservoir[J].Research of Environmental Sciences,2016,29(7):995-1005.
Authors:WANG Shuhang  WANG Wenwen  JIANG Xi  ZHAO Li  ZHANG Bo  WU Dewen and CHANG Le
Institution:1.State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China2.Shiyan Environmental Protection Bureau, Shiyan 442000, China3.Nanyang Environmental Protection Science Research Institute Co., Ltd., Nanyang 473000, China
Abstract:To study the spatial-temporal distribution characteristics and major pollution sources of nitrogen in water of Danjiangkou reservoir, spatial distribution, seasonal and inter-annual variability of nitrogen in water were analyzed. The driving force of nitrogen pollution was studied by regression analysis. Flux and contribution rate of pollution load of inlet rivers for nitrogen were estimated. ρ(TN) and ρ(NH4+-N) in the water ranged from 0.07 to 16.73 and 0.01 to 10.65 mg/L, with the mean value of 2.34 and 0.71 mg/L respectively. Concentrations of nitrogen decreased from inlet rivers to reservoir area. Characteristics of seasonal variability were:spring, winter>autumn>summer. ρ(TN) increased first and then decreased during 2005-2014. ρ(TN) in Taocha, the water intake of the mid-route of the south-to-north water transfer project, increased faster, and ρ(TN) in 2012 was 2.5 times of that in 2007. ρ(TN) in Taocha decreased in 2013 but still remained at a high level. ρ(NH4+-N) in the water remained at a low level in the recent 10 years. Nitrogen pollution in Shending River, Jiang River, Si River and Jian River was most serious. Urbanization was the main driving force for nitrogen pollution in water of Danjiangkou basin. Han River contributed the most nitrogen to the reservoir, accounting for 63.0% of the total nitrogen load. Nitrogen load of cross-border of Han River took 59.2% of the total. TN load of Han River decreased 16,5.0 t/a to satisfy the classⅢwater quality aim requested by Danjiangkou Reservoir area ecological environment protection. In the territory, rivers around the reservoir contributed the most nitrogen load, and the load of Si River, Laoguan River, Shending River, Jinqian River, Jiang River and Tian River were relatively high; TN in their water needs to be reduced 2,6.7,2,197.7,1,493.6,1,106.9,9.1 and 728.9 t/a separately. 
Keywords:Danjiangkou Reservoir  nitrogen  spatial-temporal changes  driving force  flux  pollution load  contribution rate
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学研究》浏览原始摘要信息
点击此处可从《环境科学研究》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号