首页 | 本学科首页   官方微博 | 高级检索  
     检索      

异养-自养耦合深度脱氮系统的生物脱氮性能研究
引用本文:郑绍智,刘会娟,彭剑峰,赵凯,孙欣.异养-自养耦合深度脱氮系统的生物脱氮性能研究[J].环境科学研究,2020,33(2):385-391.
作者姓名:郑绍智  刘会娟  彭剑峰  赵凯  孙欣
作者单位:1.桂林理工大学环境科学与工程学院, 广西 桂林 541006
基金项目:北京市科技计划(No.20181090497)
摘    要:为探究低C/Nρ(CODCr)/ρ(NO3--N),下同]水体的脱氮技术,分别以火山岩、火山岩/铁碳颗粒、火山岩/硫磺颗粒、火山岩/铁碳颗粒/硫磺颗粒作为填料构建R1、R2、R3和R4反应器,考察反硝化系统在不同C/N下的脱氮效果.结果表明:①随着进水C/N的降低,R1、R2和R3反应器的NO3--N去除率逐渐降低,R4反应器则是先升后降;在C/N为1.5~2.0、系统温度为30℃、进水pH为7.0±0.2、HRT(水力停留时间)为4.0 h、进水ρ(NO3--N)为30 mg/L时,R4反应器中NO3--N去除率最高,平均值为90.1%.②在R2反应器中,随着反应器的运行,铁碳颗粒自身氧化表面形成氧化膜,使得铁自养反硝化作用不断减弱,脱氮效率与R1反应器相近.③运行前期,R2和R4反应器保持着较高的ρ(NH4+-N),随着反应器的运行,4个反应器的ρ(NH4+-N)相当.④与R3反应器相比,R4反应器中不存在NO2--N的累积情况,同时铁自养过程产生的碱能被硫自养过程所消耗,系统pH更适合反硝化菌生存.研究显示,C/N为1.5~2.0时,异养-铁-硫自养反硝化系统可提供充足的电子供体,减少对有机碳源的依赖,保证了稳定高效的脱氮效果. 

关 键 词:低C/N水体    火山岩    铁碳颗粒    硫磺颗粒    异养反硝化    自养反硝化
收稿时间:2018/12/24 0:00:00
修稿时间:2019/3/24 0:00:00

Biological Nitrogen Removal Performance of Heterotrophic-Autotrophic Coupling Deep Denitrification System
ZHENG Shaozhi,LIU Huijuan,PENG Jianfeng,ZHAO Kai,SUN Xin.Biological Nitrogen Removal Performance of Heterotrophic-Autotrophic Coupling Deep Denitrification System[J].Research of Environmental Sciences,2020,33(2):385-391.
Authors:ZHENG Shaozhi  LIU Huijuan  PENG Jianfeng  ZHAO Kai  SUN Xin
Institution:1.College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China2.Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Poullution Control, School of Environment, Tsinghua University, Beijing 100084, China3.Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Abstract:To study denitrification technology in different low carbon and nitrogen ratio (C/N) water, R1, R2, R3 and R4 reactors were constructed using volcanic rocks, volcanic rocks/iron carbon particles, volcanic rocks/sulfur particles, volcanic rocks/iron carbon particles/sulfur particles as fillers, and the efficiency of denitrification system under different C/N conditions was investigated. The results showed that:(1) With the decrease of C/N, the removal efficiency of nitrate nitrogen gradually reduced of R1, R2 and R3 and R4 reactor was to increased first and then decreased. When C/N was 1.5-2.0, temperature was 30℃, pH was 7.0±0.2, hydraulic retention time (HRT) was 4.0 h, initial ρ(NO3--N) was 30 mg/L, R4 reactor nitrate removal efficiency was the highest, with an average removal efficiency of 90.1%; (2) In R2 reactor, with the reactor running, the iron carbon particles were oxidized the an oxide layer formed on the particle surface, which decreased the iron autotrophic denitrification, efficiency to a level similar to R1 reactor. (3) At the beginning, R2 and R4 reactors maintained a high ρ(NH4+-N), and then ρ(NH4+-N) of the four reactors was equival; (4) Compared with R3 reactor, there was no accumulation of NO2--N in R4 reactor, and the alkali produced by the iron autotrophic process was consumed by sulfur autotrophic process, the system pH was more suitable for the survival of denitrifying bacteria. The research showed that when C/N was 1.5-2.0, the heterotrophic-iron-sulfur autotrophic denitrification system provided sufficient electron donors and reduced the dependence on organic carbon source, ensured stable and efficient nitrogen removal. 
Keywords:low C/N water  volcanic  iron-carbon particles  sulfur particles  heterotrophic denitrification  antotrophic denitrification
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《环境科学研究》浏览原始摘要信息
点击此处可从《环境科学研究》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号