首页 | 本学科首页   官方微博 | 高级检索  
     检索      

稻田土壤β-1, 4-葡萄糖苷酶活性对温度变化的响应特征
引用本文:周璞,魏亮,魏晓梦,祝贞科,袁红朝,李巧云,吴金水.稻田土壤β-1, 4-葡萄糖苷酶活性对温度变化的响应特征[J].环境科学研究,2018,31(7):1282-1288.
作者姓名:周璞  魏亮  魏晓梦  祝贞科  袁红朝  李巧云  吴金水
作者单位:1.湖南农业大学生物科学技术学院, 湖南 长沙 410128
基金项目:国家自然科学基金项目(No.41501321);湖南省自然科学基金项目(No.2016JJ3132);农业部长江中游平原农业环境重点实验室开放基金
摘    要:温度是土壤酶活性的关键非生物影响因子,调控着土壤物质周转过程.为了探究温度变化对稻田土壤有机质周转及其关键胞外酶活性的影响,设计室内培养试验,分别在5、15、25和35℃下测定亚热带稻田土壤BG(β-1,4-葡萄糖苷酶)活性,探究温度对土壤胞外酶活性及其与碳氮转化过程的影响特征.结果表明:稻田土壤中w(DOC)(DOC为可利用态碳)、w(NH4+-N)和w(MBC)(MBC为微生物生物量碳)在5~25℃下随着培养时间的增加而降低.在第15天时BG活性达到306.57~437.75 nmol/(g·h),并随温度的增加表现为先增后减,在第3、75天时,25℃下BG活性为184.46~207.60 nmol/(g·h).土壤酶活性的Q10(温度敏感性)在15℃升至25℃时表现出正响应(Q10=1.5),而在5~15℃和25~35℃时Q10 < 1,表现为消除效应.土壤酶活性的变化是多因素共同影响的结果,温度作为关键影响因子,升温显著改变了土壤中w(DOC)、w(NH4+-N)、w(MBC)、w(MBN)(MBN为微生物生物量氮),进而影响土壤BG活性;土壤中w(MBC)对BG活性具有直接的显著负影响作用.研究显示,对参与稻田土壤碳转化BG酶活性的温度敏感性及其与土壤关键理化因子之间的耦合关系进行量化,有助于深入开展水稻土碳循环及其调控机制研究. 

关 键 词:稻田土壤    土壤温度    可利用态养分    β-1    4-葡萄糖苷酶活性    温度敏感性
收稿时间:2017/11/29 0:00:00
修稿时间:2018/1/21 0:00:00

Responses of β-1, 4-Glucosidase Activity to Temperature Changes in Paddy Soil
ZHOU Pu,WEI Liang,WEI Xiaomeng,ZHU Zhenke,YUAN Hongzhao,LI Qiaoyun and WU Jinshui.Responses of β-1, 4-Glucosidase Activity to Temperature Changes in Paddy Soil[J].Research of Environmental Sciences,2018,31(7):1282-1288.
Authors:ZHOU Pu  WEI Liang  WEI Xiaomeng  ZHU Zhenke  YUAN Hongzhao  LI Qiaoyun and WU Jinshui
Institution:1.College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha 410128, China2.Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China3.Key Laboratory for Agro-Environment in Midstream of Yangtze Plain, Ministry of Agriculture, Changsha 410125, China
Abstract:As a key biotic factor, temperature affects the soil enzyme activity and regulates soil carbon (C) and nitrogen (N) cycling. In order to clarify the response of temperature changes to the β-1, 4-glucosidase (BG) enzyme, which mainly involves in soil C and N turnover, an incubation experiment was conducted at 5, 15, 25 and 35℃, respectively. The results showed that soil dissolved organic carbon (DOC), ammonium nitrogen (NH4+-N) and soil microbial biomasses were decreased over time at 5 and 25℃. The maximal enzyme activity potential of glucosidase was ranged in 306.57-437.75 nmol/(g·h) at 15 days after incubation. On the contrary, the highest activity of BG was 184.46-207.60 nmol/(g·h) at 25℃ on the 3rd and 75th day, and the high temperature sensitivity of BG was observed at 15-25℃ (Q10=1.5), while the cancelling effects of enzyme activity (Q10 < 1) was observed both at 5-15℃ and 25-35℃, respectively. The change of soil enzyme activity was effected by multi-factors, and the increase of temperature stimulated soil microbial activities. As a result, temperature changed DOC and NH4+-N content and exaggerated soil microbial biomass triggering changes in glucosidase activity. The study results quantified the temperature sensitivity of soil enzymes involved in the carbon conversion of paddy soil and their coupling with soil physical-chemical factors, which is of great significance for further carrying out the carbon cycle and regulation mechanism of paddy soil. 
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学研究》浏览原始摘要信息
点击此处可从《环境科学研究》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号