首页 | 本学科首页   官方微博 | 高级检索  
     检索      

冬季NH3和液态水含量对PM2.5中SNA形成的影响与敏感性分析
引用本文:吕文丽,张凯,支敏康,曹晴,黎洁,罗宇骞,刘翰青.冬季NH3和液态水含量对PM2.5中SNA形成的影响与敏感性分析[J].环境科学研究,2021,34(5):1053-1062.
作者姓名:吕文丽  张凯  支敏康  曹晴  黎洁  罗宇骞  刘翰青
作者单位:1.中国环境科学研究院, 环境基准与风险评估国家重点实验室, 北京 100012
基金项目:大气重污染成因与治理攻关项目DQGG0304-05国家重点研发计划项目2016YFC0208905国家自然科学基金项目42075182
摘    要:为了解冬季不同污染等级下NH3和AWC(Aerosol Water Content,气溶胶液态水含量)对PM2.5中水溶性二次离子形成的影响,对保定市冬季颗粒物浓度、二次离子及前体物(SO2、NO2、NH3)浓度进行了分析,并利用ISORROPIA-Ⅱ计算了PM2.5中的AWC和pH.结果表明:①2017-2018年冬季保定市重污染期(AQI>200)ρ(PM2.5)、ρ(SO2)、ρ(NO2)和ρ(NH3)较优良期(AQI < 100)分别升高了3.0、1.1、1.3和0.8倍,气态前体物的二次转化是污染形成的重要原因之一.重污染期ρ(NH4+)、ρ(SO42-)、ρ(NO3-)较冬季平均值分别升高了1.2、0.9、1.3倍,其中ρ(NO3-)升幅最大,其次为ρ(NH4+).②保定市大气中过剩NH3指数为0.1 μmol/m3,采样期间为富氨环境,NO3-的生成主要受HNO3限制.③重污染期PM2.5中AWC高达93.6 μg/m3,是优良期的20.6倍,观测期间保定市SO42-的二次生成以颗粒物表面液相氧化为主,即SO2被NO2和NH3氧化,NO3-的二次生成包括NH3参与的非均相转化和N2O5的非均相水解过程.④整体而言,pH变化的敏感性表现为TA(总氨)浓度> TS(总硫)浓度> TN(总氮)浓度≈TA+TS+TN浓度(同时改变相同比例的总氨、总硫、总氮浓度),随污染等级的升高,pH对TS、TA浓度变化的敏感性减弱,对TN浓度变化的敏感性增强;单独改变TS、TN、TA浓度时AWC敏感性弱,同时改变TS、TN、TA浓度时AWC敏感性较强,AWC变化与二次离子浓度密切相关.研究显示,保定市冬季污染期SNA的形成以液态水参与的液相氧化为主,NH3可以维持颗粒物的高pH,保持氧化过程. 

关 键 词:NH3    气溶胶液态水含量(AWC)    污染等级    ISORROPIA-Ⅱ    敏感性
收稿时间:2020-09-04

Influences of NH3 and AWC on the Formation of SNA in PM2.5 in Winter and Sensitivity Analysis
Institution:1.State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China2.College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
Abstract:In order to understand the influence of NH3 and aerosol liquid water content (AWC) under different pollution levels in winter on the formation of water-soluble secondary ions in PM2.5, the concentrations of particulate matter, secondary ions and precursors (SO2, NO2 and NH3) in Baoding City were analyzed. The ISORROPIA-Ⅱ was used to calculate the AWC and pH in PM2.5. The results showed that: (1) The concentrations of PM2.5, SO2, NO2, and NH3 during the heavy pollution (AQI>200) in Baoding City were 3.0, 1.1, 1.3 and 0.8 times than those during non-pollution period (AQI < 100) in winter from 2017 to 2018. The secondary formation of gaseous precursors was one of the important reasons for this pollution formation process. During the heavy pollution period, NO3- concentration showed the largest increase (1.3 times than corresponding average concentration), followed by NH4+(1.2 times), and SO42- (0.9 times). (2) The excess NH3 index (0.1) indicated that the atmosphere of Baoding City was under ammonia-rich condition, and the formation of NO3- was mainly limited by HNO3. (3) The concentration of AWC in PM2.5 during the heavy pollution period reached 93.6 μg/m3, which is 20.6 times that of non-pollution period. During the observation period, the secondary formation of SO42- in Baoding was mainly caused by the oxidation of SO2 by NO2 and NH3 in the liquid phase on the particle surface. The secondary formation of NO3- included the heterogeneous transformation of NH3 and the heterogeneous hydrolysis of N2O5. (4) The strongest sensitivity of pH was observed after controlling TA (total ammonia), followed by TS (total sulfur), TN (total nitrogen), and TA+TS+TN (synchronously change the concentration of total ammonia, total sulfur, total nitrogen). As the pollution intensified, the pH sensitivity of TS and TA decreased, while pH sensitivity of TN increased. The sensitivity of AWC is weak when the concentration of TS, TN and TA is changed separately, but stronger when the concentration of TS, TN and TA is changed simultaneously. The change of AWC is closely related to the concentration of secondary ions. The study shows that the formation of SNA in winter pollution period in Baoding City is dominated by the liquid phase oxidation of water, and NH3 can maintain the oxidation process of high-pH particulate matter. 
Keywords:
点击此处可从《环境科学研究》浏览原始摘要信息
点击此处可从《环境科学研究》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号