首页 | 本学科首页   官方微博 | 高级检索  
     检索      

外源硝态氮对典型耕作土壤冻结过程N2O排放的影响
引用本文:陈 思,张克强,麻晓越,徐宁彤,姚 虎,沈仕洲,王 风.外源硝态氮对典型耕作土壤冻结过程N2O排放的影响[J].环境科学研究,2014,27(6):635-641.
作者姓名:陈 思  张克强  麻晓越  徐宁彤  姚 虎  沈仕洲  王 风
作者单位:1.农业部环境保护科研监测所, 天津 300191 ;东北农业大学资源与环境学院, 黑龙江 哈尔滨 150030
基金项目:国家自然科学基金项目(41001043);天津市自然科学基金项目(13JCQNJC08400)
摘    要:为明确外源硝态氮添加对典型耕作土壤冻结过程N2O排放的影响,应用室内冰柜模拟土壤冻结过程,研究在室温-冻结过程中硝态氮添加(0、80、200和500 mg/kg)对3种典型耕作土壤(黑土、潮土和黄土)N2O排放影响的特征. 结果表明:外源硝态氮的添加促进了黑土和潮土的N2O排放,在200 mg/kg硝态氮添加处理下,黑土和潮土的N2O排放通量比CK(对照)分别增加了849%和676%;但在添加高浓度(500 mg/kg)硝态氮时,黑土和潮土的N2O排放通量分别比200 mg/kg处理降低39.3%和21.2%,表现为显著抑制. 随冻结过程的进行,黑土和潮土的N2O排放通量均逐渐降低并接近零排放. 黄土N2O排放通量在室温-冻结过程中变化范围很小,甚至出现负排放. 多因素方差分析结果表明,土壤类型显著影响N2O累计排放量,而土壤pH和C/N是其中重要的影响因子. 根据室内培养试验结果,为减排N2O,建议在深秋整地施肥时期尽量避免在潮土和黑土中施用硝态氮肥. 黄土的N2O排放似乎对外源硝态氮的添加反应不明显,这有待在大田气候-植物-土壤综合条件下进一步验证. 

关 键 词:耕作土壤    冻结过程    硝态氮    N2O    排放通量
收稿时间:2013/9/26 0:00:00
修稿时间:2014/1/2 0:00:00

Effects of Nitrate Nitrogen Application on N2O Emissions from Three Types of Soil during Freezing Process
CHEN Si,ZHANG Ke-qiang,MA Xiao-yue,XU Ning-tong,YAO Hu,SHEN Shi-zhou and WANG Feng.Effects of Nitrate Nitrogen Application on N2O Emissions from Three Types of Soil during Freezing Process[J].Research of Environmental Sciences,2014,27(6):635-641.
Authors:CHEN Si  ZHANG Ke-qiang  MA Xiao-yue  XU Ning-tong  YAO Hu  SHEN Shi-zhou and WANG Feng
Institution:1.Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China ;Department of Agricultural Resources and Environments, Northeast Agricultural University, Harbin 150030, China2.Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China3.Department of Agricultural Resources and Environments, Northeast Agricultural University, Harbin 150030, China
Abstract:To understand the influence of nitrate nitrogen (NO3--N) application on N2O emissions from different soil types during the freezing process, a lab-simulated experiment was conducted to investigate N2O production from black, fluvo-aquic and loess soils receiving different concentrations of NO3--N:control (0), 80,0 and 500 mg/kg soil. The application of NO3--N significantly increased N2O emissions from the black and fluvo-aquic soils (P<0.05). Compared to the control treatment, the application of NO3--N with 200 mg/kg soil increased N2O emissions from the black and fluvo-aquic soils by 849% and 676%, respectively. However, N2O emissions from the 500 mg/kg NO3--N treatment soil were reduced by 39.3% and 21.2% compared to 200 mg/kg NO3--N treatment soil in the black and fluvo-aquic soils, respectively. As the freezing proceeded, the N2O fluxes from the black and fluvo-aquic soils gradually approached zero. Although there was no significant N2O flux found from the loess soil, N2O uptake occurred frequently in the soil. Multi-factor variance analysis showed that soil pH and soil C-to-N ratio were the most important factors driving N2O emissions. The results implied that management strategies aiming to mitigate N2O emissions from soil should avoid NO3--N fertilizer application in black and fluvo-aquic soils during late autumn fertilization. Further studies to investigate the comprehensive relationship between N2O emissions and variable field conditions involving climate, plants and soil conditions would be useful to expand this research. 
Keywords:cultivated soil  freezing process  nitrate nitrogen  N2O  emission
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学研究》浏览原始摘要信息
点击此处可从《环境科学研究》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号