首页 | 本学科首页   官方微博 | 高级检索  
     检索      

1960-2016年中国北方地区极端干湿事件演变特征
引用本文:贾艳青,张勃.1960-2016年中国北方地区极端干湿事件演变特征[J].自然资源学报,2019,34(7):1543-1554.
作者姓名:贾艳青  张勃
作者单位:1. 忻州师范学院地理系,忻州 034000;2. 西北师范大学地理与环境科学学院,兰州 730070
基金项目:国家自然科学基金项目(41561024)
摘    要:基于中国北方地区424个气象站点1960-2016年的日气象数据础,应用FAO PenmanMonteith模型计算潜在蒸散(ET0),基于降水量和潜在蒸散计算湿润指数,对湿润指数进行标准化后统计极端干湿事件频率,分析极端干湿事件频率的空间变化趋势、多时间尺度演变特征以及ENSO事件对极端干湿事件变化趋势的影响。结果表明:北方极端干旱和极端湿润事件频率分别呈显著下降和显著上升趋势,年际倾向率分别为-0.10次/10年和0.13次/10年。空间上,极端干旱频率整体呈减少趋势,包括青藏高原、西北和东北地区。西北极端干旱频率减少速率较大,青藏高原中部、新疆北部和东北北部部分站点极端湿润频率增加幅度较大。各年代中,华北极端干旱多发,东北和青藏高原极端湿润多发。季节上,分区极端干旱发生概率均大于极端湿润发生概率,华北极端干旱发生概率最高,青藏高原极端湿润发生概率最高。ENSO与湿润指数存在滞后性的关系。El Ni?o翌年,气候偏湿润的年份较多;La Nina翌年,气候偏干旱的年份较多。SSTA与翌年湿润指数在年际和夏季两个时间尺度上存在显著的正相关关系。

关 键 词:北方地区  极端干湿  湿润指数  潜在蒸散  ENSO
收稿时间:2018-12-29

Spatio-temporal changes of the extreme drought and wet events in Northern China from 1960 to 2016
JIA Yan-qing,ZHANG Bo.Spatio-temporal changes of the extreme drought and wet events in Northern China from 1960 to 2016[J].Journal of Natural Resources,2019,34(7):1543-1554.
Authors:JIA Yan-qing  ZHANG Bo
Institution:1. Department of Geography, Xinzhou Normal University, Xinzhou 034000, Shanxi, China;2. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
Abstract:Global warming has caused non-uniform changes in precipitation intensity and distribution. Therefore, drought and flood events may increase accordingly in Northern China. Based on the daily data of 424 meteorological stations in northern China from 1960 to 2016, ET0 was calculated by using the Penman-Monteith method to examine the changes of extreme drought and wet events in the study region. We calculated the surface humid indexes based on ET0 and precipitation, and used the Mann-Kendall (MK) trend test to analyze the frequencies of extreme drought and wet events by standardized surface humid indexes. All spatial distribution maps were plotted using the linear regression interpolation method embedded in the ArcGIS 10.1 software. This paper analyzed the spatio-temporal variations and multiple scale evolvement of extreme drought and wet events in northern China from 1960 to 2016, and explored the influence of El Niño Southern Oscillation (ENSO) on the extreme drought and wet events threshold using the correlation analysis method. The tendency rates of extreme drought and wet frequency were about -0.10 per decade and 0.13 per decade, respectively. In terms of spatial trends, the frequency of overall trend of extreme drought and wet events decreased and increased significantly from 1960 to 2016, respectively. The area where the number of extreme drought events decreased corresponded to the area where that of extreme wet events increased, including Tibetan Plateau, Northwest China, and Northeast China. The frequency of extreme drought decreased significantly in Northwest China, while that of extreme wet events increased significantly in central Tibetan Plateau, northern Xinjiang, and north of Northeast China. The annual occurrence frequency of extreme drought events was greater than that of extreme wet events. In different sub-regions, the frequency of extreme drought decreased, while that of extreme wet events increased. In different decades, the frequency of extreme drought events was higher in North China, while that of extreme wet events was higher in Northeast China and Tibetan Plateau. On month scales, summer witnessed higher probability of occurrence of extreme wet events, and the probability of occurrence of extreme drought in each month was far greater than that of extreme wet events. The probability of extreme drought was greater than that of extreme wet events in sub-regions, with the probability of extreme drought being the highest in North China and that of extreme wet events being the highest in the Tibetan Plateau. The relationship between the ENSO and the humidity index arrived with a delay. The wet events occurred frequently following El Niño, the drought events happened generally following La Nina. SSTA and the humidity index of next year had a significant positive correlation on annual and summer time scales. The SSTA had an important effect on drought and wet conditions in most parts of Northern China. Finally, this paper can benefit drought/flood characterization from the perspective of the overall dimensions of Northern China, and help decision making in risk-based drought/flood management in the context of global warming.
Keywords:Northern China  extreme drought/wet event  surface humid indexes  ET0  ENSO  
本文献已被 维普 等数据库收录!
点击此处可从《自然资源学报》浏览原始摘要信息
点击此处可从《自然资源学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号