首页 | 本学科首页   官方微博 | 高级检索  
     检索      

天然菱铁矿改性及强化除砷研究
引用本文:赵凯,郭华明,李媛,任燕.天然菱铁矿改性及强化除砷研究[J].环境科学,2012,33(2):459-468.
作者姓名:赵凯  郭华明  李媛  任燕
作者单位:中国地质大学(北京)水资源与环境学院,北京 100083;中国地质大学(北京)水资源与环境学院,北京 100083;中国地质大学(北京)水资源与环境学院,北京 100083;中国地质大学(北京)水资源与环境学院,北京 100083
基金项目:教育部新世纪优秀人才支持计划项目(NCET-07-0770);教育部科技创新工程重大项目培育资金项目(708012);"十一五"国家科技支撑计划重点项目(2006BAJ08B04)
摘    要:我国高砷地下水分布广泛,经济、高效地饮用水除砷技术受到广泛关注.静态批实验采用资源丰富、价格便宜的天然菱铁矿为主要原材料,考虑灼烧温度、时间及添加黏合剂等因素确定最优改性条件使除砷效果达到最佳.结果表明,在加铝量为10 mg.g-1、350℃下恒温灼烧90 min后造粒达到强度要求并除砷效果较优.25℃、固液比为0.5 g∶50 mL、As(Ⅲ)和As(Ⅴ)初始浓度为5 mg.L-1时,吸附后溶液中残留As浓度均<10μg.L-1.静态吸附批实验结果表明,25℃时,接触反应时间为12 h可达到吸附平衡,吸附过程较好地符合Lagergren假二级吸附速率方程;最优改性天然菱铁矿对砷的吸附规律可用Langmuir和Freundlich等温吸附模型很好地描述,As(Ⅲ)、As(Ⅴ)饱和吸附容量分别可以达到1 039、1 026μg.g-1.结合XRD、SEM等研究方法和比表面及孔结构分析初步探讨天然菱铁矿改性以及除砷的主要机制.分析表明,改性后天然菱铁矿比表面积大幅度增大,孔径减小,且在表面活化生成一层圆球状的含Fe(Ⅱ)和Fe(Ⅲ)的化合物.改性天然菱铁矿是一种值得进一步研究并实际应用的除砷材料.

关 键 词:天然菱铁矿  改性  饮用水  除砷  吸附
修稿时间:2011/9/19 0:00:00

Modification of Natural Siderite and Enhanced Adsorption of Arsenic
ZHAO Kai,GUO Hua-ming,LI Yuan and REN Yan.Modification of Natural Siderite and Enhanced Adsorption of Arsenic[J].Chinese Journal of Environmental Science,2012,33(2):459-468.
Authors:ZHAO Kai  GUO Hua-ming  LI Yuan and REN Yan
Institution:School of Water Resources and Environment, China University of Geosciences(Beijing), Beijing 100083, China;School of Water Resources and Environment, China University of Geosciences(Beijing), Beijing 100083, China;School of Water Resources and Environment, China University of Geosciences(Beijing), Beijing 100083, China;School of Water Resources and Environment, China University of Geosciences(Beijing), Beijing 100083, China
Abstract:Groundwater with high arsenic concentration has widely been found in China. More attention has been paid to economic and efficient arsenic removal technology. Natural siderite, which was abundant and relatively cheap, was used as the main raw material for arsenic adsorption by batch methods. Modified conditions of natural siderite, including temperature and time of calcination and adhesive addition, were carried out for arsenic removal. Results showed that the maximum removal efficiency was reached with the calcination temperature of 350 degrees C for 90 minutes and an adhesive dosage of 10 mg x g(-1). With the ratio of solid to liquid of 0.5 g: 50 mL and the initial concentration of 5 mg x L(-1) for either As(III) or As(V) at 25 degrees C, arsenic concentrations at equilibrium time were lower than 10 microg x L(-1). Characteristics of adsorption kinetics and adsorption isotherm on the optimal modified adsorbent were also evaluated. It was found that the arsenic adsorption kinetics fitted pseudo-second order kinetics equation, and the adsorption achieved equilibrium at about 12 h. The adsorption isotherm could be well described by Langmuir and Freundlich models. The maximum adsorption capacity was 1039 microg x g(-1) for As(III) and 1 026 microg x g(-1) for As(V). Furthermore, X-ray diffraction (XRD), scanning electron microscopy (SEM), and BET method were used to investigate main mechanisms of arsenic removal. Results showed that modified adsorbent had higher specific surface area and contained the spherical coating of Fe(II) and Fe(III) on the surface, in comparison with pristine material, which were believed to contribute to the high adsorption capacity of the modified material. The modified natural siderite appears to be a promising adsorbent that is worthy of further studies and practical application for arsenic removal.
Keywords:natural siderite  modification  drinking water  arsenic removal  adsorption
本文献已被 CNKI PubMed 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号