首页 | 本学科首页   官方微博 | 高级检索  
     检索      

湿地基质及阴极面积对人工湿地型微生物燃料电池去除偶氮染料同步产电的影响
引用本文:李薛晓,程思超,方舟,李先宁.湿地基质及阴极面积对人工湿地型微生物燃料电池去除偶氮染料同步产电的影响[J].环境科学,2017,38(5):1904-1910.
作者姓名:李薛晓  程思超  方舟  李先宁
作者单位:东南大学能源与环境学院, 南京 210096,东南大学能源与环境学院, 南京 210096,东南大学能源与环境学院, 南京 210096,东南大学能源与环境学院, 南京 210096
基金项目:国家水体污染控制与治理科技重大专项(2012ZX07101-005);国家自然科学基金项目(21277024)
摘    要:本研究采用人工湿地型微生物燃料电池处理偶氮染料X-3B,实现降解偶氮染料同步产电的效果.为了构建性能最优的人工湿地型微生物燃料电池(CW-MFC)系统,本研究主要从湿地基质和阴极面积两个方面研究系统构型对去除X-3B同步产电的影响,提高系统性能.研究表明以粒径10 mm、孔隙率30%的小石子作为湿地基质构造的CW-MFC系统微生物生物量最大,去除X-3B效果最好,脱色率高达92.70%,但其产电性能最差.较小的粒径和孔隙率使底层微生物生物量增加,促进X-3B的去除,但随着湿地基质粒径和孔隙率的减小,导致阴阳极营养物质不足,系统传质阻力增加,抑制了系统产电性能.X-3B的去除效果随着阴极面积的增加而提高直到阴极面积为594 cm~2时取得最大脱色率99.41%.当阴极面积继续增加时,CW-MFC系统产电性能上升趋势趋于平缓,X-3B去除效果呈现下降趋势,这是因为阴极反应过快导致更多的阳极电子输送到阴极用于产生电流,与X-3B发生反应的电子减少,阳极成为提高CW-MFC系统性能的限制因素.

关 键 词:人工湿地型微生物燃料电池  X-3B  脱色  产电  湿地基质  阴极面积
收稿时间:2016/8/29 0:00:00
修稿时间:2016/12/8 0:00:00

Effects of Microbial Fuel Cell Coupled Constructed Wetland with Different Support Matrix and Cathode Areas on the Degradation of Azo Dye and Electricity Production
LI Xue-xiao,CHENG Si-chao,FANG Zhou and LI Xian-ning.Effects of Microbial Fuel Cell Coupled Constructed Wetland with Different Support Matrix and Cathode Areas on the Degradation of Azo Dye and Electricity Production[J].Chinese Journal of Environmental Science,2017,38(5):1904-1910.
Authors:LI Xue-xiao  CHENG Si-chao  FANG Zhou and LI Xian-ning
Institution:School of Energy and Environment, Southeast University, Nanjing 210096, China,School of Energy and Environment, Southeast University, Nanjing 210096, China,School of Energy and Environment, Southeast University, Nanjing 210096, China and School of Energy and Environment, Southeast University, Nanjing 210096, China
Abstract:In this study, microbial fuel cell coupled constructed wetland (CW-MFC) was constructed for azo dye reactive brilliant red X-3B degradation and electricity production. The effects of support matrix and cathode areas on the degradation of X-3B and the electricity production of CW-MFC were investigated in this work to improve the performance of CW-MFC. The highest decolorization efficiency was 92.70% and was obtained when the CW-MFC was constructed with support matrix S3 with particle size of 10 mm and porosity of 30%. Small particle size increased the microbial biomass of the bottom layer of CW-MFC, which would promote the decolorization of X-3B in the bottom layer. However, it may cause the lack of nutrition in electrode layer and the increase in resistance of mass transfer, which would lead to the decline of electricity production. The decolorization efficiency and the power density of CW-MFC increased concomitantly with the increase of cathode areas, and the CW-MFC got the highest decolorization efficiency of 99.41% when the cathode area was 594 cm2. The electricity production performance became stable when the cathode area continued to increase, while the decolorization efficiency declined. This may be attributed to that more electrons were transferred to the cathode to produce current instead of used in degradation of X-3B.
Keywords:microbial fuel cell coupled constructed wetland  X-3B  decolorization  electricity production  support matrix  cathode areas
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号