首页 | 本学科首页   官方微博 | 高级检索  
     检索      

数学模拟好氧颗粒污泥的形成及水力剪切强度对颗粒粒径的影响
引用本文:董峰,张捍民,杨凤林.数学模拟好氧颗粒污泥的形成及水力剪切强度对颗粒粒径的影响[J].环境科学,2012,33(1):181-190.
作者姓名:董峰  张捍民  杨凤林
作者单位:大连理工大学环境学院, 工业生态与环境工程教育部重点实验室, 大连 116024;大连理工大学环境学院, 工业生态与环境工程教育部重点实验室, 大连 116024;大连理工大学环境学院, 工业生态与环境工程教育部重点实验室, 大连 116024
基金项目:国家自然科学基金项目(50878034); 大连市科学技术基金项目(2008E12SF179)
摘    要:以生物膜数学模型和活性污泥数学模型为基础,建立好氧颗粒污泥一维数学模型,并模拟营养物质的去除、颗粒粒径变化、反应器周期表现以及好氧颗粒污泥内DO和菌群分布.模拟有机物SS浓度和出水NH4+-N浓度逐渐降低,在大约50 d左右达到稳定,50 d后模拟出水浓度分别<25 mg.L-1和<1.5 mg.L-1.模拟出水NO3--N浓度随着粒径的增加呈现降低趋势.当颗粒粒径由模拟30 d时的1.1 mm增加到100 d时的2.5 mm,颗粒污泥缺氧区面积相应增加,总氮(TN)的去除率由不到10%增加到91%左右,最终模拟出水NO3--N浓度降低到<3 mg.L-1.在好氧颗粒污泥系统内,由于氧气传质阻力,模拟颗粒污泥外层DO浓度高而内层浓度低,颗粒内可以发生同时硝化反硝化,且好氧颗粒污泥内DO特征随时间而发生变化.在好氧初期,好氧颗粒污泥代谢活性高,模拟DO传质深度大约为100~200μm;而在好氧末期,模拟DO传质深度为800μm.模拟自养菌主要分布在DO浓度高的颗粒外层,异养菌分布在整个颗粒.当水力剪切系数kde由0.25(m.d)-1逐渐增加到5(m.d)-1时,模拟颗粒平衡粒径依次由3.5 mm左右减小到大约1.8 mm.在不同水力剪切强度下模拟颗粒污泥生长特征相似,其平衡状态下粒径随曝气强度的增加而减小,可以通过控制曝气强度来控制好氧颗粒污泥的平衡粒径.

关 键 词:好氧颗粒污泥  数学模型  生物膜  活性污泥数学模型  水力剪切  颗粒粒径
修稿时间:2011/6/11 0:00:00

Modeling Formation of Aerobic Granule and Influence of Hydrodynamic Shear Forces on Granule Diameter
DONG Feng,ZHANG Han-min and YANG Feng-lin.Modeling Formation of Aerobic Granule and Influence of Hydrodynamic Shear Forces on Granule Diameter[J].Chinese Journal of Environmental Science,2012,33(1):181-190.
Authors:DONG Feng  ZHANG Han-min and YANG Feng-lin
Institution:Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environment, Dalian University of Technology, Dalian 116024, China;Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environment, Dalian University of Technology, Dalian 116024, China;Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environment, Dalian University of Technology, Dalian 116024, China
Abstract:A one-dimension aerobic granule mathematical model was established, basing on mathematical biofilm model and activated sludge model. The model was used to simulate simple aerobic granule process such as nutrients removal, granule diameter evolution, cycle performance as well as depth profiles of DO and biomass. The effluent NH4(+) -N concentration decreased as the modeling processed. The simulation effluent NO3(-)-N concentration decreased to 3 mg x L(-1) as the granules grew. While the granule diameter increased from 1.1 mm on day 30 to 2.5 mm on day 100, the TN removal efficiency increased from less than 10% to 91%. The denitrification capacity was believed to enhance because the anoxic zone would be enlarged with the increasing granule diameter. The simultaneous nitrification and denitrification occurred inside the big aerobic granules. The oxygen permeating depth increased with the consumption of substrate. It was about 100-200 microm at the beginning of the aeration phase, and it turned to near 800 microm at the end of reaction. The autotrophs (AOB and NOB) were mostly located at the out layer where the DO concentration was high. The heterotrophic bacteria were distributed through the whole granule. As hydrodynamic shear coefficient k(de) increased from 0.25 (m x d)(-1) to 5 (m x d)(-1), the granule diameter under steady state decreased form 3.5 mm to 1.8 mm. The granule size under the dynamic steady-state decreased with the increasing hydrodynamic shear force. The granule size could be controlled by adjusting aeration intensity.
Keywords:aerobic granule  mathematical modeling  biofilm  activated sludge model  hydrodynamic shear force  granule diameter
本文献已被 CNKI PubMed 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号