首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Fe(Ⅲ)-EDTA作为阴极电子穿梭体的微生物燃料电池持续产电机制
引用本文:邓丽芳,周顺桂,张锦涛,庄莉,卢娜,张礼霞.Fe(Ⅲ)-EDTA作为阴极电子穿梭体的微生物燃料电池持续产电机制[J].环境科学,2009,30(7):2142-2147.
作者姓名:邓丽芳  周顺桂  张锦涛  庄莉  卢娜  张礼霞
作者单位:1. 中国科学院广州地球化学研究所,广州,510640;广东省生态环境与土壤研究所,广州,510650;中国科学院研究生院,北京,100049
2. 广东省生态环境与土壤研究所,广州,510650
基金项目:国家自然科学基金项目(40601043,20777013);广东省自然科学基金项目(07006759);广东省科学科技创新引导项目(CX2007)
摘    要:阴极氧还原反应(ORR)是影响微生物燃料电池(microbial fuel cell,MFC)性能的重要因素.采用双室MFC以Fe(Ⅲ)-EDTA为阴极液进行持续产电试验.结果表明,添加Fe(Ⅲ)-EDTA作为阴极液可显著加速氧还原反应速率,降低内阻,提高输出电压与功率.当阴极液中存在20.0 mmol/L的Fe(Ⅲ)-EDTA时,电池内阻仅为300 Ω,比对照降低了900 Ω,其输出电压(1 000 Ω下)与功率密度可维持在200.1 mV、 16.0 mW/m2左右,比不加的对照分别提高73.2%、 70.1%. Fe(Ⅲ)-EDTA氧化再生与持续产电试验表明,Fe(Ⅲ)-EDTA可通过曝气氧化再生、循环利用,即Fe(Ⅲ)-EDTA可作为阴极电子穿梭体加速电子至氧气的传递.Fe(Ⅲ)-EDTA首先接受阴极电子被还原成Fe(Ⅱ)-EDTA,在阴极室充分曝气条件下,Fe(Ⅱ)-EDTA将电子传递给O2同时被氧化再生成Fe(Ⅲ)-EDTA,从而完成电子从电极传递到氧气的穿梭过程,MFC得以长期稳定运行.进一步优化试验显示,Fe(Ⅲ)-EDTA作为阴极电子穿梭体强化MFC产电的适宜条件为:浓度20.0 mmol/L、pH=5.0左右.在此条件下MFC的最大功率密度达100.9 mW/m2.

关 键 词:微生物燃料电池  电子穿梭体  Fe(Ⅲ)-EDTA  氧化再生  Klebsiella  pneumoniae  L17
收稿时间:8/8/2008 12:00:00 AM
修稿时间:2008/10/27 0:00:00

Sustainable Electricity Generation in Microbial Fuel Cells Using Fe(Ⅲ)-EDTA as Cathodic Electron Shuttle
DENG Li-fang,ZHOU Shun-gui,ZHANG Jin-tao,ZHUANG Li,LU Na and ZHANG Li-xia.Sustainable Electricity Generation in Microbial Fuel Cells Using Fe(Ⅲ)-EDTA as Cathodic Electron Shuttle[J].Chinese Journal of Environmental Science,2009,30(7):2142-2147.
Authors:DENG Li-fang  ZHOU Shun-gui  ZHANG Jin-tao  ZHUANG Li  LU Na and ZHANG Li-xia
Institution:1.Guangzhou Institute of Geochemistry;Chinese Academy of Sciences;Guangzhou 510640;China;2.Guangdong Institute of Eco-Environmental and Soil Sciences;Guangzhou 510650;3.Graduate University of Chinese Academy of Sciences;Beijing 100049;China
Abstract:The rate of oxygen reduction reaction (QRR) at the cathode is a major factor affecting the perfonnance of the microbial fuel cells (MFC). Results showed that when using Fe( Ⅲ)-EDTA solution as catholyte, the ORR rate was significantly increased and the internal resistance was reduced,consequently leading to an increase in power output. With a concentration of Fe(Ⅱ )-EDTA at 20.0 mmol/L in the catholyte, the MFC produced the voltage and power density at approximate 200.1 mV and 16.0 mW/m~2,respectively,which was increased by 73.2% and 70.1% contrary to the MFC without the presence of Fe( Ⅰ )-EDTA. The further experiment suggested that Fe(Ⅲ)-EDTA functioned as electron shuttle to accelerate electron transfer. Fe(Ⅲ )-EDTA received electron and got reduced to Fe(Ⅱ )-EDTA,which further provided electrons to oxygen and got reoxidized at the same time. Therefore Fe( Ⅲ)-EDTA can act as recyclable electron shuttles between cathode electrode and oxygen. The optimum condition in the case of using Fe( IE )-EDTA as cathode electron shuttles was tested to be Fe( Ⅲ )-EDTA concentration at 20.0 mmol/L and pH at 5.0,which allowed MFC produced the maximum power density of 100.9 mW/m~2.
Keywords:Klebsiella  pneumoniae  L17  microbial fuel cell(MFC)  electron shuttle  oxidation regeneration  Klebsiella pneumoniae L17
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号