首页 | 本学科首页   官方微博 | 高级检索  
     检索      

小型池塘水-气界面CH4冒泡通量的观测
引用本文:张秀芳,肖薇,张弥,王伟,赵佳玉,胡勇博,谢成玉,张圳,谢燕红,黄文晶.小型池塘水-气界面CH4冒泡通量的观测[J].环境科学,2018,39(2):691-702.
作者姓名:张秀芳  肖薇  张弥  王伟  赵佳玉  胡勇博  谢成玉  张圳  谢燕红  黄文晶
作者单位:南京信息工程大学大气环境中心, 南京 210044,南京信息工程大学大气环境中心, 南京 210044;南京信息工程大学气象灾害预报预警与评估协同创新中心, 南京 210044,南京信息工程大学大气环境中心, 南京 210044,南京信息工程大学大气环境中心, 南京 210044,南京信息工程大学大气环境中心, 南京 210044,南京信息工程大学大气环境中心, 南京 210044,南京信息工程大学大气环境中心, 南京 210044,南京信息工程大学大气环境中心, 南京 210044,南京信息工程大学大气环境中心, 南京 210044,南京信息工程大学大气环境中心, 南京 210044
基金项目:国家自然科学基金项目(41475141,41505005,41575147,BK20150900,2014r046)
摘    要:为了量化亚热带浅水养殖塘CH_4冒泡通量占CH_4总通量的比例,选取安徽省全椒县两个小型池塘为研究对象,采用倒置漏斗法和顶空平衡法,自2016年7月28日至8月13日观测夏季水-气界面的CH_4通量.结果表明,两个池塘CH_4冒泡通量分别是121.78 mg·(m~2·d)~(-1)和161.08 mg·(m~2·d)~(-1),CH_4扩散通量分别是3.38 mg·(m~2·d)~(-1)和3.79 mg·(m~2·d)~(-1),CH_4冒泡通量占总通量比例分别是97.5%和96.4%.CH_4冒泡通量具有高度空间异质性,A塘CH_4冒泡通量的变化范围为0.11~446.90 mg·(m~2·d)~(-1),B塘CH_4冒泡通量变化范围为0.05~607.51 mg·(m~2·d)~(-1).两个池塘的气体冒泡速率都是白天高于夜间,主要受风速控制.对于较浅的池塘,在小时尺度上,CH_4冒泡通量的主要影响因素是风速;在日尺度上,CH_4冒泡通量的主要影响因素是风速和水深,其中CH_4冒泡通量与风速呈正相关关系,与水深呈负相关关系.不同纬度的水体CH_4冒泡通量不同,中纬度地区的淡水环境比高纬度地区CH_4冒泡通量更高.通过观测手段量化小型浅水池塘CH_4冒泡通量,可以为准确估算内陆水体对区域和全球碳循环的贡献提供数据支持和理论参考.

关 键 词:小型池塘  甲烷冒泡通量  甲烷扩散通量  倒置漏斗法  顶空平衡法
收稿时间:2017/7/15 0:00:00
修稿时间:2017/10/27 0:00:00

Quantification of Methane Ebullition Flux from Small Ponds Using the Inverted-Funnel Method
ZHANG Xiu-fang,XIAO Wei,ZHANG Mi,WANG Wei,ZHAO Jia-yu,HU Yong-bo,XIE Cheng-yu,ZHANG Zhen,XIE Yan-hong and HUANG Wen-jing.Quantification of Methane Ebullition Flux from Small Ponds Using the Inverted-Funnel Method[J].Chinese Journal of Environmental Science,2018,39(2):691-702.
Authors:ZHANG Xiu-fang  XIAO Wei  ZHANG Mi  WANG Wei  ZHAO Jia-yu  HU Yong-bo  XIE Cheng-yu  ZHANG Zhen  XIE Yan-hong and HUANG Wen-jing
Institution:Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China,Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China,Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China,Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China,Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China,Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China,Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China,Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China,Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China and Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China
Abstract:To quantify the ratio of CH4 ebullition to total flux in subtropical shallow ponds, the CH4 flux at the water-air interface was measured using the inverted-funnel and water equilibrium methods in two small ponds in Quanjiao, Anhui Province from July 28 to August 13, 2016. The average CH4 ebullition fluxes were 121.78 and 161.08 mg·(m2·d)-1 and the average diffusion fluxes were 3.38 and 3.79 mg·(m2·d)-1 over pond A and pond B, respectively. The ebullition flux accounted for 97.5% and 96.4% of the total flux over pond A and pond B, respectively. Methane ebullition ranged from 0.11 to 446.90 mg·(m2·d)-1 over pond A and from 0.05 to 607.51 mg·(m2·d)-1 over pond B. Gas ebullition rate during the day was higher than that at night and was controlled by wind speed. Methane ebullition flux was influenced by wind speed over the shallow pond at hourly scale and by water depth and wind speed at daily scale, with positive correlation with wind speed and negative correlation with water depth. Varying with latitude, methane ebullition flux was higher for the water bodies in the mid-latitude region compared to those in the high-latitude region. Direct observations of the methane ebullition flux over small ponds provide data support and theoretical reference to precisely estimate the contribution of inland water bodies to regional and global carbon cycle.
Keywords:small pond  CH4 ebullition flux  CH4 diffusion flux  inverted-funnel method  water-equilibrium method
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号