首页 | 本学科首页   官方微博 | 高级检索  
     检索      

厌氧条件下可溶性有机质对汞的还原与氧化作用
引用本文:卞永荣,顾宝华,朱波,程虎,谷成刚,杨兴伦,宋洋,王芳,叶茂,蒋新.厌氧条件下可溶性有机质对汞的还原与氧化作用[J].环境科学,2018,39(11):5036-5042.
作者姓名:卞永荣  顾宝华  朱波  程虎  谷成刚  杨兴伦  宋洋  王芳  叶茂  蒋新
作者单位:中国科学院水利部成都山地灾害与环境研究所中国科学院山地表生过程与生态调控重点实验室;中国科学院大学;中国科学院南京土壤研究所中国科学院土壤环境与污染修复重点实验室;美国橡树岭国家实验室环境科学系;武夷学院茶与食品学院;中...;河北阳煤正元化工集团有限...;阳煤集团太原化工新材料有...;广东省养分资源循环利用与...;农业部南方植物营养与肥料...;河北正元化工工程设计有限...;北京科技大学土木与环境工...;燕山大学信息科学与工程学...;西北农林科技大学生命科学...;中国石化石油化工科学研究...
基金项目:国家自然科学基金项目(41271464);江苏省自然科学基金项目(BK20131463);中国科学院战略性先导科技专项(XDA05050506);中国科学院前沿科学重点研究计划项目(QYZDJ-SSW-DQC035)
摘    要:在沉积物、湿地和淹水的水稻土中天然可溶性有机质(DOM),如胡敏酸(HA)和富里酸(FA)处于还原状态,其介导Hg(Ⅱ)的还原,影响汞的转化及地球化学循环.本文通过模拟黑暗厌氧环境,研究还原态HA与FA对Hg(Ⅱ)的还原.结果表明,还原态HA与FA的还原容量高于对照氧化态HA与FA.还原态HA与FA对Hg(Ⅱ)的还原最佳浓度分别是0. 2mg·L~(-1)和1. 5 mg·L~(-1).而高于最佳浓度时,由于发生巯基竞争性络合作用,抑制Hg(Ⅱ)的还原;特别是还原态HA大于5mg·L~(-1)时,不能还原Hg(Ⅱ)为Hg(0).还原态HA与FA对Hg(Ⅱ)的还原反应动力学表明:有机碳(DOC)与Hg(Ⅱ)摩尔比DOC∶Hg(Ⅱ)=400∶1时,还原反应速率IHSS-HA FRC-HA FRC-FA;高摩尔比DOC∶Hg(Ⅱ)=10 000∶1]时,还原态HA对Hg(Ⅱ)的还原反应停止,甚至向相反方向进行.还原态HA与FA对Hg(0)氧化结果表明,当还原态HA与FA浓度分别增加至5 mg·L~(-1)和10 mg·L~(-1)时,样品中检测不到Hg(0),还原态HA与FA对Hg(0)发生诱导性氧化络合作用.在汞的氧化还原与络合作用中,还原态DOM扮演双重角色,影响活性汞的可利用性,进而影响微生物汞的甲基化.

关 键 词:  可溶性有机质  还原  氧化  厌氧条件
收稿时间:2018/4/27 0:00:00
修稿时间:2018/5/4 0:00:00

Reduction and Oxidation of Mercury by Dissolved Organic Matter Under Anaerobic Conditions
BIAN Yong-rong,GU Bao-hu,ZHU Bo,CHENG Hu,GU Cheng-gang,YANG Xing-lun,SONG Yang,WANG Fang,YE Mao and JIANG Xin.Reduction and Oxidation of Mercury by Dissolved Organic Matter Under Anaerobic Conditions[J].Chinese Journal of Environmental Science,2018,39(11):5036-5042.
Authors:BIAN Yong-rong  GU Bao-hu  ZHU Bo  CHENG Hu  GU Cheng-gang  YANG Xing-lun  SONG Yang  WANG Fang  YE Mao and JIANG Xin
Institution:Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China;University of Chinese Academy of Sciences, Beijing 100049, China;Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China,Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States,Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China,University of Chinese Academy of Sciences, Beijing 100049, China;Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China,Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China,Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China,Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China,Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China,Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China and Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
Abstract:
Keywords:mercury  dissolved organic matter  reduction  oxidation  anaerobic conditions
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号