首页 | 本学科首页   官方微博 | 高级检索  
     检索      

纳米零价铁(NZVI)对厌氧产甲烷活性、污泥特性和微生物群落结构的影响
引用本文:苏润华,丁丽丽,任洪强.纳米零价铁(NZVI)对厌氧产甲烷活性、污泥特性和微生物群落结构的影响[J].环境科学,2018,39(7):3286-3296.
作者姓名:苏润华  丁丽丽  任洪强
作者单位:南京大学环境学院污染控制与资源化研究国家重点实验室
基金项目:国家水体污染控制与治理科技重大专项(2017ZX07202003)
摘    要:重点比较了纳米零价铁(NZVI)和微米级铁(ZVI)短期暴露条件下,厌氧产甲烷过程中污泥产甲烷活性、污泥生理生化特征、细胞膜磷脂组成和微生物群落结构的变化.结果表明,NZVI组中累积产甲烷量随着NZVI投加浓度的增加降低.5 000mg·L~(-1)ZVI组累积产甲烷量未受影响.5 d时NZVI(100~5 000 mg·L~(-1))组铁离子浓度是空白组的1.6~7.4倍,5 000mg·L~(-1)ZVI组铁离子浓度略高于空白组.5 000 mg·L~(-1)NZVI组胞外聚合物总量大幅下降为空白组的21.1%,而活菌比仍可保持在空白组的79.7%.辅酶F420和辅酶M含量在5 000 mg·L~(-1)NZVI组中为空白组的40.2%和61.6%,但100 mg·L~(-1)NZVI组和5 000 mg·L~(-1)ZVI组中辅酶F420含量升高为空白组的1.3倍.不同实验组污泥支链脂肪酸和不饱和脂肪酸的总含量为:ZVI-5 000(21.18%)空白组(19.37%)NZVI-1000(16.69%)NZVI-5000(15.94%)NZVI-100(12.08%).NZVI可使环境中铁离子浓度升高和细胞膜流动性下降,降低细胞活性和产甲烷关键辅酶活性,从而对产甲烷过程造成抑制;主成分分析和冗余分析表明,厌氧系统中微生物群落组成可受到NZVI的影响发生较大变化,Nakamurella、Bacillus、Trichococcus和Petrimonas对NZVI耐受性高.

关 键 词:纳米零价铁  辅酶  磷脂脂肪酸  微生物群落  冗余分析
收稿时间:2017/11/30 0:00:00
修稿时间:2018/1/11 0:00:00

Impact of Nano Zero-Valent Iron (NZVI) on Methanogenic Activity, Physiological Traits, and Microbial Community Structure in Anaerobic Digestion
SU Run-hu,DING Li-li and REN Hong-qiang.Impact of Nano Zero-Valent Iron (NZVI) on Methanogenic Activity, Physiological Traits, and Microbial Community Structure in Anaerobic Digestion[J].Chinese Journal of Environmental Science,2018,39(7):3286-3296.
Authors:SU Run-hu  DING Li-li and REN Hong-qiang
Institution:State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China,State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China and State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
Abstract:Effects of short-term nano zero-valent iron (NZVI) and zero-valent iron (ZVI) exposure on methanogenic activity of anaerobic sludge, physiological traits, composition of phospholipid fatty acids (PLFA), and microbial community structure were investigated. Results show that accumulated methane production decreased with an increase of NZVI concentration; yet, methane production only changed slightly with the same concentration of ZVI. In the NZVI (100-5000 mg·L-1) sets, dissolved iron (DFe) concentrations were 1.6-7.4 times that of the control value at 5 d, whereas DFe was only slightly above the control in the ZVI set (5000 mg·L-1). The concentration of extracellular polymeric substances and cell viability decreased to 21.1% and 79.7%, respectively, of the control in the 5000 mg·L-1 NZVI treatments. Coenzyme F420 and coenzyme M decreased to 40.2% and 61.1%, respectively, of the control in the 5000 mg·L-1 NZVI treatments, which were significantly increased to 1.3 times that of the control value in the 100 mg·L-1 NZVI and 5000 mg·L-1 ZVI treatments. The order of unsaturation and branch PLFA content was ZVI-5000 (21.18%) > control (19.37%) > NZVI-1000 (16.69%) > NZVI-5000 (15.94%) > NZVI-100 (12.08%). High NZVI concentration (5000 mg·L-1) resulted in an increase of DFe and a decrease of cell membrane fluidity and key coenzyme activity of methanogenesis, which led to the inhibition of methane production. Principle component analysis and redundancy analysis indicated that differences in the microbial community existed among these treatments and that Nakamurella, Bacillus, Trichococcus, and Petrimonas showed tolerance to NZVI.
Keywords:nano zero-valent iron (NZVI)  coenzyme  phospholipid fatty acid(PLFA)  microbial community  redundancy analysis
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号