首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于甲烷氧化菌的城镇污水厂尾水极限脱氮系统构建及机制
引用本文:杨娅男,李彦澄,李江,吴攀,杨钊,向福亮.基于甲烷氧化菌的城镇污水厂尾水极限脱氮系统构建及机制[J].环境科学,2020,41(4):1787-1793.
作者姓名:杨娅男  李彦澄  李江  吴攀  杨钊  向福亮
作者单位:贵州大学资源与环境工程学院,贵阳550025,贵州大学资源与环境工程学院,贵阳550025;贵州喀斯特环境生态系统教育部野外科学观测研究站,贵阳550025,贵州大学资源与环境工程学院,贵阳550025;贵州喀斯特环境生态系统教育部野外科学观测研究站,贵阳550025,贵州大学资源与环境工程学院,贵阳550025;贵州喀斯特环境生态系统教育部野外科学观测研究站,贵阳550025,贵州大学资源与环境工程学院,贵阳550025,贵州大学资源与环境工程学院,贵阳550025
基金项目:贵州省科技计划项目(黔科合基础[2019]1079号);贵州省教育厅青年科技人才成长项目(黔教合KY字[2018]118);贵州大学培育项目(黔科合平台人才[2017]5788)
摘    要:好氧甲烷耦合反硝化(AME-D)在城镇污水厂尾水深度脱氮方面具有巨大的应用潜力,研究采用改良型反硝化生物滤池,利用低浓度甲烷构建出AME-D极限脱氮系统.研究发现该系统在间歇式运行方式下,出水中总氮和氨氮的平均浓度能达到1.05 mg·L-1和0.54 mg·L-1,其平均去除率分别为94.77%和93.30%.拉曼光谱分析结果显示,由NO3-对称伸缩引起的峰明显消失,由醇COH面外弯曲或C—H面外弯曲振动吸收引起峰明显增强,甲烷被氧化形成的中间产物可能主要为醇类物质.16S rRNA基因测序结果表明,系统中的甲烷氧化菌主要为Methylocystis(0.27%)、Methylosarcina(0.10%)和Methyloparacoccus(0.12%),反硝化菌主要为Pseudomonas(56.92%)、Paenibacillus(3.52%)和Lysinibacillus(3.00%),硝化菌主要为Nitrospira(0.1%),说明AME-D极限脱氮系统的脱氮功能是由好氧甲烷氧化菌、反硝化菌和硝化菌协同实现.

关 键 词:甲烷氧化菌  城镇污水厂尾水  极限脱氮  拉曼光谱  16S  rRNA
收稿时间:2019/10/15 0:00:00
修稿时间:2019/11/25 0:00:00

Construction and Mechanism of Methanotroph-based Ultimate Denitrification System for Tailwater of Urban Sewage Plants
YANG Ya-nan,LI Yan-cheng,LI Jiang,WU Pan,YANG Zhao and XIANG Fu-liang.Construction and Mechanism of Methanotroph-based Ultimate Denitrification System for Tailwater of Urban Sewage Plants[J].Chinese Journal of Environmental Science,2020,41(4):1787-1793.
Authors:YANG Ya-nan  LI Yan-cheng  LI Jiang  WU Pan  YANG Zhao and XIANG Fu-liang
Institution:College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China,College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China;Field Scientific Observation and Research Station, Ministry of Education, Guiyang 550025, China,College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China;Field Scientific Observation and Research Station, Ministry of Education, Guiyang 550025, China,College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China;Field Scientific Observation and Research Station, Ministry of Education, Guiyang 550025, China,College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China and College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
Abstract:With great practical potential of aerobic methane coupled to denitrification (AME-D) in deep denitrification of tailwater in urban sewage plants, an AME-D extreme denitrification system with low concentration of methane, was established in an improved denitrification biofilter. The finding indicated that in an intermittent operation mode, the average concentration of total nitrogen and ammonia nitrogen in the effluent could reach 1.05 mg·L-1 and 0.54 mg·L-1, and the average removal rate was 94.77% and 93.30%, respectively. According to Raman spectral analysis, the crests formed by NO3- symmetric stretching disappeared, and crests formed by the vibration and absorption, where the outer alcohol COH plane or the C-H plane was bent, were significantly enhanced, so the intermediate products produced during which methane was oxidized may be alcohols. 16S rRNA gene sequencing results showed that dominant methanotrophs included Methylocystis (0.27%), Methylosarcina (0.10%), and Methyloparacoccus (0.12%), dominant denitrifying bacteria were Pseudomonas (56.92%), Paenibacillus (3.52%), and Lysinibacillus (3.00%), and the dominant nitrifying bacteria were Nitrospira (0.1%) in this system. Thus, it could be concluded that synergism of aerobic methanotrophs, denitrifying bacteria, and nitrifying bacteria could lead to extreme denitrification.
Keywords:methanotrophs  tailwater of urban sewage plant  extreme denitrification  Raman spectroscopy  16S rRNA
本文献已被 万方数据 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号