首页 | 本学科首页   官方微博 | 高级检索  
     检索      

2015年12月北京市空气重污染过程分析及污染源排放变化
引用本文:薛亦峰,周震,聂滕,潘涛,齐珺,聂磊,王占山,李云婷,李雪峰,田贺忠.2015年12月北京市空气重污染过程分析及污染源排放变化[J].环境科学,2016,37(5):1593-1601.
作者姓名:薛亦峰  周震  聂滕  潘涛  齐珺  聂磊  王占山  李云婷  李雪峰  田贺忠
作者单位:北京市环境保护科学研究院, 国家城市环境污染控制工程技术研究中心, 北京 100037;北京师范大学环境学院, 环境模拟与污染控制国家重点联合实验室, 北京 100875;北京市环境保护科学研究院, 国家城市环境污染控制工程技术研究中心, 北京 100037;北京市环境保护科学研究院, 国家城市环境污染控制工程技术研究中心, 北京 100037;北京市环境保护科学研究院, 国家城市环境污染控制工程技术研究中心, 北京 100037;天津大学环境科学与工程学院, 天津 300072;北京市环境保护科学研究院, 国家城市环境污染控制工程技术研究中心, 北京 100037;北京市环境保护科学研究院, 国家城市环境污染控制工程技术研究中心, 北京 100037;北京市环境保护监测中心, 北京 100048;北京市环境保护监测中心, 北京 100048;北京市环境保护科学研究院, 国家城市环境污染控制工程技术研究中心, 北京 100037;北京师范大学环境学院, 环境模拟与污染控制国家重点联合实验室, 北京 100875;北京师范大学大气环境研究中心, 北京 100875
基金项目:国家科技支撑计划项目(2014BAC23B02,2014BAC23B03,2014BAC06B05)
摘    要:2015年12月,北京市及周边地区连续多次出现重污染天气.在此期间,北京市空气重污染应急指挥部两次发布红色预警.为厘清该月重污染的发生过程、生消变化,测算了应急措施下的污染源排放变化情况,并采用数值模拟和地面观测相结合的分析方法,对重污染的形成原因进行初步分析,同时对应急措施的环境效果进行评估.结果表明:1虽然2015年12月北京市主要大气污染物排放量较去年同期有所下降,但排放强度仍然较大,是重污染过程的内因;气象扩散条件不利是重要的外因,地面风速弱,大气稳定度高,相对湿度高,边界层高度降低,源排放及气象因素共同导致了此轮重污染过程.2红色预警应急措施可实现污染物日排放强度减少36%左右,PM2.5浓度下降11%~21%,预警的应急措施不能扭转重污染的态势,但对于缓解PM2.5污染加重趋势有明显的效果.3在重污染天气下,污染物仍在大气中累积,应急措施最明显的效果发生在实施后的48~72 h后,因此建议在PM2.5浓度快速上升前36~48 h实施减排措施,从而对空气质量预报准确性提出更高的要求.

关 键 词:重污染  红色预警  排放清单  气象条件  应急措施
收稿时间:2015/1/18 0:00:00
修稿时间:3/3/2015 12:00:00 AM

Exploring the Severe Haze in Beijing During December, 2015: Pollution Process and Emissions Variation
XUE Yi-feng,ZHOU Zhen,NIE Teng,PAN Tao,QI Jun,NIE Lei,WANG Zhan-shan,LI Yun-ting,LI Xue-feng and TIAN He-zhong.Exploring the Severe Haze in Beijing During December, 2015: Pollution Process and Emissions Variation[J].Chinese Journal of Environmental Science,2016,37(5):1593-1601.
Authors:XUE Yi-feng  ZHOU Zhen  NIE Teng  PAN Tao  QI Jun  NIE Lei  WANG Zhan-shan  LI Yun-ting  LI Xue-feng and TIAN He-zhong
Institution:National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China;State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China;National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China;National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China;National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China;School of Environmental Science and Technology, Tianjin University, Tianjin 300072, China;National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China;National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China;Beijing Municipal Environmental Monitoring Center, Beijing 100048, China;Beijing Municipal Environmental Monitoring Center, Beijing 100048, China;National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China;State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China;Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
Abstract:Severe haze episodes shrouded Beijing and its surrounding regions again during December, 2015, causing major environmental and health problems. Beijing authorities had launched two red alerts for atmospheric heavy pollution in this period, adopted a series of emergency control measures to reduce the emissions from major pollution sources. To better understand the pollution process and emissions variation during these extreme pollution events, we performed a model-assisted analysis of the hourly observation data of PM2.5 and meteorological parameters combined with the emissions variation of pollution sources. The synthetic analysis indicated that: 1 Compared with the same period of last year, the emissions of atmospheric pollution sources decreased in December 2015. However, the emission levels of primary pollutants were still rather high, which were the main intrinsic causes for haze episodes, and the unfavorable diffusion conditions represented the important external factor. High source emissions and meteorological factors together led to this heavy air pollution process. 2 Emergency control measures taken by the red alert for heavy air pollution could decrease the pollutants emission by about 36% and the PM2.5 concentrations by 11% to 21%. Though the implementation of red alert could not reverse the evolution trend of heavier pollution, it indeed played an active role in mitigation of PM2.5 pollution aggravating. 3 Under the heavy pollution weather conditions, air pollutants continued to accumulate in the atmosphere, and the maximum effect by taking emergency measures occurred 48-72 hours after starting the implementation, therefore, the best time for executing emergency measures should be 36-48 hours before the rapid rise of PM2.5 concentration, which requires a more powerful demand on the accuracy of air quality forecast.
Keywords:heavy air pollution  red alert  emission inventory  meteorological conditions  emergency control measures
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号