首页 | 本学科首页   官方微博 | 高级检索  
     检索      

黄河中游(渭南-郑州段)全/多氟烷基化合物的分布及通量
引用本文:李琦路,程相会,赵祯,郭萌然,袁梦,华夏,方祥光,孙红文.黄河中游(渭南-郑州段)全/多氟烷基化合物的分布及通量[J].环境科学,2019,40(1):228-238.
作者姓名:李琦路  程相会  赵祯  郭萌然  袁梦  华夏  方祥光  孙红文
作者单位:河南师范大学环境学院, 黄淮水环境与污染防治教育部重点实验室, 河南省环境污染控制重点实验室, 新乡 453007;中国科学院广州地球化学研究所, 有机地球化学国家重点实验室, 广州 510640;河南师范大学环境学院, 黄淮水环境与污染防治教育部重点实验室, 河南省环境污染控制重点实验室, 新乡 453007;南开大学环境科学与工程学院, 环境污染过程与基准教育部重点实验室, 天津 300350
基金项目:中国博士后科学基金项目(2016M600581);国家自然科学基金项目(41603101);有机地球化学国家重点实验室开放基金项目(OGL201502)
摘    要:本研究收集黄河中游(渭南—郑州段)表层水样品,利用高效液相色谱质谱串联的方法分析了水相和颗粒相中的28种全氟和多氟烷基化合物(PFASs).结果表明,水相和颗粒相中Σ28PFASs的含量分别为18.4~56.9 ng·L~(-1)和26.8~164ng·g~(-1)(以干重计).水相和颗粒相中以全氟己酸(PFHx A)为主要污染物,分别占总含量的27%和16%,且3H-全氟-3-(3-甲氧基丙氧基)丙酸(ADONA)、氯代多氟醚基磺酸(6∶2和8∶2 Cl-PFESA)在颗粒相均有检出,表明PFASs替代品的生产和使用逐渐增多.PFASs在水相-颗粒相中的lg Kd变化范围为2.95±0.553(PFPe A)~3.85±0.237(8∶2 FTUCA),颗粒物吸附氟调聚羧酸(FTCAs)和不饱和氟调聚羧酸(FTUCAs)的能力随碳链长度的增长而增加,全氟烷基磺酸(PFSAs)较全氟烷基羧酸(PFCAs)更容易被颗粒物吸附.黄河郑州—渭南段PFASs的通量呈现先降低后增加的趋势,表明该河段接纳了来自上游及支流的污染输入.此外,结果表明水相中的PFASs通量大于颗粒相.

关 键 词:全/多氟烷基化合物(PFASs)  黄河  替代品  分配系数  通量
收稿时间:2018/5/29 0:00:00
修稿时间:2018/7/5 0:00:00

Distribution and Fluxes of Perfluoroalkyl and Polyfluoroalkyl Substances in the Middle Reaches of the Yellow River (Weinan-Zhengzhou Section)
LI Qi-lu,CHENG Xiang-hui,ZHAO Zhen,GUO Meng-ran,YUAN Meng,HUA Xi,FANG Xiang-guang and SUN Hong-wen.Distribution and Fluxes of Perfluoroalkyl and Polyfluoroalkyl Substances in the Middle Reaches of the Yellow River (Weinan-Zhengzhou Section)[J].Chinese Journal of Environmental Science,2019,40(1):228-238.
Authors:LI Qi-lu  CHENG Xiang-hui  ZHAO Zhen  GUO Meng-ran  YUAN Meng  HUA Xi  FANG Xiang-guang and SUN Hong-wen
Institution:Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China;State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China,Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China,Key Laboratory of Pollution Processes and Environment Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China,Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China,Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China,Key Laboratory of Pollution Processes and Environment Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China,Key Laboratory of Pollution Processes and Environment Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China and Key Laboratory of Pollution Processes and Environment Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
Abstract:Surface water samples were collected in the middle reaches of the Yellow River (Weinan-Zhengzhou section) and all 28 perfluoroalkyl and polyfluoroalkyl substance (PFAS) levels were measured using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The results show that the levels of PFASs in the water and particle phase are 18.4-56.9 ng·L-1 and 26.8-164 ng·g-1, respectively. Perfluorohexanoic acid (PFHxA) in the water and particle phases is the main pollutant, accounting for 27% and 16% of the total concentrations, respectively, and 3H-perfluoro-3-(3-methoxy-propoxy)-propanoate] acid (ADONA) and chlorinated polyfluorinated ethersulfonic acids (6:2 and 8:2 Cl-PFESA) were detected in the particle phase, indicating that the use of PFAS alternatives gradually increases. The lgKd of PFASs between the water and particle phase ranges from 2.95±0.553 (PFPeA) to 3.85±0.237 (8:2 FTUCA)and the adsorption of fluorotelomer carboxylic acids (FTCAs) and fluorotelomer unsaturated carboxylic acids (FTUCAs) on particulate matter increases with increasing of carbon chain length. Perfluoroalkane sulfonic acids (PFSAs) are more easily adsorbed by particulate matter than perfluoroalkyl carboxylic acids (PFCAs). The fluxes of PFASs in the Weinan-Zhengzhou section of the Yellow River show a decrease at first and then increase, indicating that this section receives pollution inputs from the upstream and tributaries. In addition, the results show that the fluxes of PFASs in the water phase are greater than those in the particle phase.
Keywords:perfluoroalkyl and polyfluoroalkyl substances (PFASs)  Yellow River  alternative  partition coefficient  flux
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号