首页 | 本学科首页   官方微博 | 高级检索  
     检索      

不同CDPF贵金属负载量对柴油公交车VOCs组分排放影响
引用本文:楼狄明,张子骏,刘继跃,谭丕强,胡志远.不同CDPF贵金属负载量对柴油公交车VOCs组分排放影响[J].环境科学,2017,38(12):4983-4990.
作者姓名:楼狄明  张子骏  刘继跃  谭丕强  胡志远
作者单位:同济大学汽车学院, 上海 201804,同济大学汽车学院, 上海 201804,同济大学汽车学院, 上海 201804,同济大学汽车学院, 上海 201804,同济大学汽车学院, 上海 201804
基金项目:上海市科学技术委员会科研计划项目(16DZ1206700)
摘    要:基于重型底盘测功机,利用质子转移反应质谱(PTR-MS)研究了柴油公交车在中国典型城市公交车循环(CCBC)下,不同CDPF贵金属负载量对尾气中挥发性有机物(VOCs)组分排放特性的影响.结果表明,柴油公交车VOCs主要组分为含氧有机物(OVOCs)、芳香烃和烯烃等,且OVOCs占比达50%以上;在贵金属成分、配比相同时,VOCs减排率随CDPF贵金属负载量增加而增加:贵金属负载量为15 g·ft~(-3)(A型后处理装置)、25 g·ft~(-3)(B型)和35 g·ft~(-3)(C型)时,VOCs总量的减排率依次为36.2%、40.1%和41.4%.C型后处理装置对烷烃全循环减排率高达70.2%,且对OVOCs的催化有微弱优势;对于不饱和烃类,3种不同贵金属负载量的后处理装置均有一定催化效果,但无明显差异;A型对含氮有机物减排率可达50.5%,但减排率随贵金属负载量增加而降低.采用DOC+CDPF后能较好地降低公交车VOCs排放量进而降低臭氧生成潜势(OFP).同时考虑不同方案减排效果与成本因素,当加权系数分别为0.8和0.2时,B型为最优方案.

关 键 词:柴油机  VOCs  氧化型催化器  催化型颗粒捕集器  贵金属负载量
收稿时间:2017/6/7 0:00:00
修稿时间:2017/6/30 0:00:00

Effects of Different Precious Metal Loads of CDPF on Characteristics of VOCs Emissions from a Diesel Bus
LOU Di-ming,ZHANG Zi-jun,LIU Ji-yue,TAN Pi-qiang and HU Zhi-yuan.Effects of Different Precious Metal Loads of CDPF on Characteristics of VOCs Emissions from a Diesel Bus[J].Chinese Journal of Environmental Science,2017,38(12):4983-4990.
Authors:LOU Di-ming  ZHANG Zi-jun  LIU Ji-yue  TAN Pi-qiang and HU Zhi-yuan
Institution:School of Automotive Studies, Tongji University, Shanghai 201804, China,School of Automotive Studies, Tongji University, Shanghai 201804, China,School of Automotive Studies, Tongji University, Shanghai 201804, China,School of Automotive Studies, Tongji University, Shanghai 201804, China and School of Automotive Studies, Tongji University, Shanghai 201804, China
Abstract:Based on heavy chassis dynamometers, an experimental study was conducted in a diesel bus with proton transfer reaction mass spectrometry (PTR-MS). It investigated the effects of volatile organic compound (VOC) emission characteristics with three different diesel oxidation catalyst (DOC)+catalyzed diesel particulate filter (CDPF) after-treatments for a typical Chinese city bus driving cycle (CCBC). The results reveal that the major compounds from the diesel bus are OVOCs, aromatic hydrocarbons, alkenes, alkanes, nitrogenous organic compounds, and polycyclic aromatic hydrocarbons (PAH), and that the OVOCs account for more than 50%of the total VOCs. With the same precious metal composition and ratio of the proportion in the CDPF catalyst, the emissions of VOCs decrease with an increase in precious metal load. The emission reduction rates of the VOCs are 36.2%, 40.1%, and 41.4%, respectively, when the precious metal loads are 15 g·ft-3 (type A after-treatment device), 25 g·ft-3 (type B), and 35 g·ft-3 (type C). The average emission rates of alkanes for the three kinds of DOC+CDPF after-treatments are all over 59% for the entire CCBC cycle. The type C after-treatment device can reduce the alkane emissions by 70.2%, with a slight advantage for the OVOC reduction compared with type A and type B devices. For unsaturated hydrocarbons, including aromatic hydrocarbons, alkenes, and PAHs, the after-treatment devices have a catalytic effect, but there is no significant difference between them. The emissions of nitrogenous organic compounds are greatly decreased, by 50.5%, with the type A after-treatment, but the reduction rate decreases with an increase in precious metal load. In addition, OVOCs, aromatic hydrocarbons, and alkenes are the most important contributors to ozone formation. The adoption of DOC+CDPF reduces the emissions of VOCs and, therefore, the ozone formation potential. Taking into account the emission reduction rates and costs of the three different after-treatments and for weighting coefficients of 0.8 and 0.2, respectively, the type B after-treatment is the optimal solution.
Keywords:diesel engine  VOCs  diesel oxidation catalyst (DOC)  catalyzed diesel particulate filter (CDPF)  precious medal loads
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号