首页 | 本学科首页   官方微博 | 高级检索  
     检索      

高铁酸钾氧化降解三氯生的动力学模拟及反应机制研究
引用本文:杨滨,应光国,赵建亮.高铁酸钾氧化降解三氯生的动力学模拟及反应机制研究[J].环境科学,2011,32(9):2543-2548.
作者姓名:杨滨  应光国  赵建亮
作者单位:中国科学院广州地球化学研究所有机地球化学国家重点实验室,广州 510640;中国科学院广州地球化学研究所有机地球化学国家重点实验室,广州 510640;中国科学院广州地球化学研究所有机地球化学国家重点实验室,广州 510640
基金项目:国家水体污染控制与治理科技重大专项(2009ZX07528-001); 国家杰出青年科学基金项目(40688001);国家自然科学基金项目 (40821003);有机地球化学国家重点实验室项目(sklog2009A02)
摘    要:对高铁酸钾氧化降解水中微量三氯生(TCS)的反应动力学、反应机制及降解效果进行了实验研究.结果表明,高铁酸钾氧化降解TCS符合二级反应动力学模式,pH 8.5时表观二级反应动力学速率常数为531.9 L.(mol.s)-1,以10 mg.L-1的高铁酸钾计算,反应的半衰期是25.8 s.表观二级反应动力学速率常数随着p...

关 键 词:高铁酸钾  三氯生  氧化  二级反应动力学  线性自由能关系
收稿时间:2010/10/9 0:00:00
修稿时间:2010/12/13 0:00:00

Kinetics modeling and reaction mechanism of ferrate(VI) oxidation of triclosan
YANG Bin,YING Guang-guo and ZHAO Jian-liang.Kinetics modeling and reaction mechanism of ferrate(VI) oxidation of triclosan[J].Chinese Journal of Environmental Science,2011,32(9):2543-2548.
Authors:YANG Bin  YING Guang-guo and ZHAO Jian-liang
Institution:YANG Bin,YING Guang-guo,ZHAO Jian-liang(State Key Laboratory of Organic Geochemistry,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China)
Abstract:Triclosan (TCS) is a broad-spectrum antibacterial agent widely used in many personal care products. We investigated oxidation of TCS by aqueous ferrate Fe(VI) to determine reaction kinetics, interpreted the reaction mechanism by a linear free-energy relationship, and evaluated the degradation efficiency. Second-order reaction kinetics was used to model Fe (VI) oxidation of TCS, with the apparent second-order rate constant (k(app)) being 531.9 L x (mol x s)(-1) at pH 8.5 and (24 +/- 1) degrees C. The half life (t1/2) is 25.8 s for an Fe( VI) concentration of 10 mg x L(-1). The rate constants of the reaction decrease with increasing pH values. These pH-dependent variations in k(app) could be distributed by considering species-specific reactions between Fe(VI) species and acid-base species of an ionizable TCS. Species-specific second-order reaction rate constants, k, were determined for reaction of HFeO4(-) with each of TCS's acid-base species. The value of k determined for neutral TCS was (4.1 +/- 3.5) x 10(2) L x (mol x s)(-1), while that measured for anionic TCS was (1.8 +/- 0.1) x 10(4) L x (mol x s)(-1). The reaction between HFeO4(-) and the dissociated TCS controls the overall reaction. A linear free-energy relationship illustrated the electrophilic oxidation mechanism. Fe (VI) reacts initially with TCS by electrophilic attack at the latter's phenol moiety. At a nFe(VI)]: n(TCS) > 7: 1, complete removal of TCS was achieved. And lower concentration of the humic acid could enhance the k(app) of Fe( VI) with TCS. In conclusion, Fe(VI) oxidation technology appears to be a promising tool for applications of WWTPs effluents and other decontamination processes.
Keywords:
本文献已被 CNKI PubMed 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号