首页 | 本学科首页   官方微博 | 高级检索  
     检索      

黄河口不同恢复阶段湿地土壤N2O产生的不同过程及贡献
引用本文:孙文广,孙志高,甘卓亭,孙万龙,王伟.黄河口不同恢复阶段湿地土壤N2O产生的不同过程及贡献[J].环境科学,2014,35(8):3110-3119.
作者姓名:孙文广  孙志高  甘卓亭  孙万龙  王伟
作者单位:中国科学院烟台海岸带研究所, 海岸带环境过程与生态修复重点实验室, 山东省海岸带环境过程重点实验室, 烟台 264003;中国科学院大学, 北京 100049;中国科学院烟台海岸带研究所, 海岸带环境过程与生态修复重点实验室, 山东省海岸带环境过程重点实验室, 烟台 264003;宝鸡文理学院陕西省灾害监测与机理模拟重点实验室, 宝鸡 721013;中国科学院烟台海岸带研究所, 海岸带环境过程与生态修复重点实验室, 山东省海岸带环境过程重点实验室, 烟台 264003;中国科学院大学, 北京 100049;中国科学院烟台海岸带研究所, 海岸带环境过程与生态修复重点实验室, 山东省海岸带环境过程重点实验室, 烟台 264003;鲁东大学地理与规划学院, 烟台 264025
基金项目:国家自然科学基金项目(41171424,41371104);中国科学院"一三五"规划生态突破项目(Y254021031);中国科学院重点部署项目(KZZD-EW-14);中国科学院人才专项(Y129091041)
摘    要:采用时空替代法,选择黄河口生态恢复前后未恢复区(R0)、2007年恢复区(R2007)和2002年恢复区(R2002)的芦苇湿地为研究对象,分析了生态恢复工程对湿地土壤N2O产生不同过程与贡献的影响.结果表明,尽管不同恢复阶段湿地土壤N2O总产生量差异明显,但总体均表现为N2O释放.恢复区湿地土壤的N2O产生量大于未恢复区.N2O的产生主要以硝化作用和硝化细菌反硝化作用为主,而反硝化作用对N2O的产生有较大削弱作用,这与不同恢复阶段湿地土壤理化性质密切相关.非生物作用对N2O产生量贡献较大,这与黄河口为高活性铁区,Fe的还原作用关系密切.尽管黄河口不同恢复阶段湿地土壤N2O的产生是生物作用与非生物作用共同作用的结果,但由于非生物作用对N2O产生的影响较大,应受到特别关注.温度和水分对不同恢复阶段湿地土壤N2O产生过程的影响不尽一致,这与土壤微生物活性对温度和水分的响应差异有关.黄河口不同恢复阶段湿地土壤的N2O总产生量介于(0.37±0.08)~(9.75±7.64)nmol·(kg·h)-1,略高于闽江口互花米草湿地的N2O总产生量,但明显低于富氧森林土壤、草原土壤和闽江口短叶茳芏湿地的N2O总产生量.研究发现,黄河口生态恢复工程的长期实施明显促进了N2O的产生,因而下一步生态恢复工程应统筹考虑景观恢复与温室气体削弱这两方面因素.

关 键 词:生态恢复  芦苇湿地  硝化反硝化作用  非生物作用  黄河口
收稿时间:1/6/2014 12:00:00 AM
修稿时间:2014/3/21 0:00:00

Contribution of Different Processes in Wetland Soil N2O Production in Different Restoration Phases of the Yellow River Estuary, China
SUN Wen-guang,SUN Zhi-gao,GAN Zhuo-ting,SUN Wan-long and WANG Wei.Contribution of Different Processes in Wetland Soil N2O Production in Different Restoration Phases of the Yellow River Estuary, China[J].Chinese Journal of Environmental Science,2014,35(8):3110-3119.
Authors:SUN Wen-guang  SUN Zhi-gao  GAN Zhuo-ting  SUN Wan-long and WANG Wei
Institution:Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;University of Chinese Academy of Sciences, Beijing 100049, China;Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;Key Laboratory of Disaster Monitoring and Mechanism Simulating of Shaanxi Province, Baoji University of Arts and Sciences, Baoji 721013, China;Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;University of Chinese Academy of Sciences, Beijing 100049, China;Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;Institute of Geography and Plan, Ludong University, Yantai 264025, China
Abstract:By using the method of time-space mutual substitution, the contribution of different processes in wetland soil N2O production was studied in the un-restoration wetland (R0), restoration wetland since 2007 (R2007) and restoration wetland since 2002 (R2002) of the Yellow River estuary to evaluate the effectiveness of the restoration projects. Results showed wetland soil total N2O production had a significant difference in different restoration phases, but the N2O release was the main source. The N2O production in restoration wetland was higher than that in un-restoration wetland. The N2O production was mainly due to the nitrification and nitrifier denitrification processes, while the denitrification process had great weakening effects on N2O production, which was closely related to the physical and chemical properties of wetland soils in different restoration phases. The non-biological processes made greater contributions to N2O production and these were mainly due to that iron was reductive, while the Yellow River estuary was an area of highly active iron. Although N2O production in wetland soils was the results of biological processes combined with non-biological processes in different restoration phases, non-biological processes had larger influences and should be paid a special attention. There were different influences on wetland soil processes generating N2O between temperature and water content, indicating responses of soil microbial activities to temperature and water content were different. In addition, the N2O production contents ranged from 0.37±0.08 nmol·(kg·h)-1 to 9.75±7.64 nmol·(kg·h)-1 in marshes of the Yellow River estuary, which was slightly higher than those in the S. alterniflora wetland soils of the Min River estuary, but significantly lower than those in the C. malaccensis wetland soils of the Min River estuary, the grassland soils and the aerobic forest soils. We found that the long-term implements of ecological restoration project in the Yellow River estuary obviously promoted N2O production, so we should consider two factors of landscape restoration and weakening greenhouse gases in the next wetland restoration project.
Keywords:ecological restoration  Phragmites australis marshes  nitrification-denitrification  non-biological processes  Yellow River estuary
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号